forked from huggingface/transformers-bloom-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bloom-accelerate-inference.py
161 lines (115 loc) · 4.59 KB
/
bloom-accelerate-inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import gc
import math
import os
import time
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", required=False, type=int, help="used by dist launchers")
parser.add_argument("--name", type=str, help="Name path", required=True)
parser.add_argument("--batch_size", default=1, type=int, help="batch size")
parser.add_argument("--benchmark", action="store_true", help="additionally run benchmark")
parser.add_argument("--greedy", action="store_true")
parser.add_argument("--top-k", type=int, default=0)
parser.add_argument("--top-p", type=float, default=0.0)
parser.add_argument("--dtype", type=str, help="float16 or int8", choices=["int8", "float16"], default="float16")
return parser.parse_args()
t_start = time.time()
num_tokens = 100
args = get_args()
local_rank = int(os.getenv("LOCAL_RANK", "0"))
world_size = torch.cuda.device_count()
rank = local_rank
def print_rank0(*msg):
if rank != 0:
return
print(*msg)
print_rank0(f"Using {world_size} gpus")
model_name = args.name
print_rank0(f"Loading model {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
# XXX: can't automatically derive dtype via config's `from_pretrained`
dtype = torch.bfloat16 if model_name in ["bigscience/bloom", "bigscience/bigscience-small-testing"] else torch.float16
# print(get_max_memory_per_gpu_dict())
infer_dtype = args.dtype
if infer_dtype == "int8":
dtype = torch.int8
kwargs = dict(
device_map="balanced_low_0",
)
if infer_dtype == "int8":
print_rank0("Using `load_in_8bit=True` to use quanitized model")
kwargs["load_in_8bit"] = True
else:
kwargs["torch_dtype"] = dtype
model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs)
if args.benchmark:
t_ready = time.time()
### Generate
print_rank0(f"*** Starting to generate {num_tokens} tokens with bs={args.batch_size}")
input_sentences = [
"DeepSpeed is a machine learning framework",
"He is working on",
"He has a",
"He got all",
"Everyone is happy and I can",
"The new movie that got Oscar this year",
"In the far far distance from our galaxy,",
"Peace is the only way",
]
if args.batch_size > len(input_sentences):
# dynamically extend to support larger bs by repetition
input_sentences *= math.ceil(args.batch_size / len(input_sentences))
generate_kwargs = dict(max_new_tokens=num_tokens, do_sample=False)
# generate_kwargs = dict(max_new_tokens=num_tokens, use_cache=False, do_sample=False)
# generate_kwargs = dict(min_length=num_tokens, max_length=num_tokens, do_sample=False)
print_rank0(f"Generate args {generate_kwargs}")
inputs = input_sentences[: args.batch_size]
def generate():
"""returns a list of zipped inputs, outputs and number of new tokens"""
input_tokens = tokenizer.batch_encode_plus(inputs, return_tensors="pt", padding=True)
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to("cuda:0")
outputs = model.generate(**input_tokens, **generate_kwargs)
input_tokens_lengths = [x.shape[0] for x in input_tokens.input_ids]
output_tokens_lengths = [x.shape[0] for x in outputs]
total_new_tokens = [o - i for i, o in zip(input_tokens_lengths, output_tokens_lengths)]
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return zip(inputs, outputs, total_new_tokens)
print_rank0("*** Running generate")
t_generate_start = time.time()
generated = generate()
t_generate_span = time.time() - t_generate_start
for i, o, _ in generated:
print_rank0(f"{'-'*60}\nin={i}\nout={o}\n")
### Benchmark
if args.benchmark:
# clear cache / free memory
torch.cuda.empty_cache()
gc.collect()
print_rank0("*** Running benchmark")
# warm up
for i in range(1):
_ = generate()
torch.cuda.synchronize()
# benchmark
t0 = time.time()
cycles = 5
total_new_tokens_generated = 0
for i in range(cycles):
generated = generate()
total_new_tokens_generated += sum(new_tokens for _, _, new_tokens in generated)
torch.cuda.synchronize()
througput = (time.time() - t0) / (total_new_tokens_generated)
print_rank0(
f"""
*** Performance stats:
Throughput per token including tokenize: {througput*1000:.2f} msecs
Start to ready to generate: {t_ready - t_start:.3f} secs
Tokenize and generate {total_new_tokens_generated} (bs={args.batch_size}) tokens: {t_generate_span:.3f} secs
Start to finish: {t_ready - t_start + t_generate_span:.3f} secs
"""
)