Title: TruthfulQA: Measuring How Models Mimic Human Falsehoods
Abstract: https://arxiv.org/abs/2109.07958
Homepage: https://github.com/sylinrl/TruthfulQA
@inproceedings{lin-etal-2022-truthfulqa,
title = "{T}ruthful{QA}: Measuring How Models Mimic Human Falsehoods",
author = "Lin, Stephanie and
Hilton, Jacob and
Evans, Owain",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.229",
doi = "10.18653/v1/2022.acl-long.229",
pages = "3214--3252",
}
- Not part of a group yet.
truthfulqa_mc1
:Multiple-choice, single answer
- (MISSING)
truthfulqa_mc2
:Multiple-choice, multiple answers
- (MISSING)
truthfulqa_gen
:Answer generation
For adding novel benchmarks/datasets to the library:
- Is the task an existing benchmark in the literature?
- Have you referenced the original paper that introduced the task?
- If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
- Is the "Main" variant of this task clearly denoted?
- Have you provided a short sentence in a README on what each new variant adds / evaluates?
- Have you noted which, if any, published evaluation setups are matched by this variant?