forked from quint-t/Puzzle-Generator-and-Solver
-
Notifications
You must be signed in to change notification settings - Fork 1
/
solver_example.py
412 lines (378 loc) · 16.5 KB
/
solver_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import time
import collections
from typing import Union, Tuple, List, Set, Callable
def format_table(table: List[List[str]]) -> str:
col_width = [max(len(x) for x in col) for col in zip(*table)]
return '\n'.join('| ' + ' | '.join('{:{}}'.format(x, col_width[i]) for i, x in enumerate(line)) + ' |'
for line in table)
def update_range(wns: List[str], rns: List[List[Set[str]]], cmp: Callable):
changed = False
for rn in rns:
classified_words = set()
for set_of_words in rn:
if len(set_of_words) == 1:
classified_words.add(next(iter(set_of_words)))
word_to_cols = {}
for n_col, set_of_words in enumerate(rn):
if len(set_of_words) != 1:
prev_length = len(set_of_words)
set_of_words.difference_update(classified_words)
changed |= prev_length != len(set_of_words)
for word in set_of_words:
word_to_cols.setdefault(word, set()).add(n_col)
for word, cols in word_to_cols.items():
if len(cols) == 1:
x = rn[next(iter(cols))]
if len(x) != 1:
x.clear()
x.add(word)
changed = True
new_rns = [[{x for x in xs if x != wn} for xs in rn] for wn, rn in zip(wns, rns)]
pairs = []
for wn, rn in zip(wns, rns):
new_pairs = []
break_condition = True
for cn, setn in enumerate(rn):
if wn in setn:
break_condition = False
if not pairs:
pairs = [[]]
for v in pairs:
new_pairs.append([*v, cn])
pairs = new_pairs
if break_condition:
break
for pair in pairs:
if cmp(*pair):
for nrn, cn, wn in zip(new_rns, pair, wns):
nrn[cn].add(wn)
changed |= any(rn != new_rn for rn, new_rn in zip(rns, new_rns))
if changed:
for rn, new_rn in zip(rns, new_rns):
if rn != new_rn:
print(f'{str(rn)} -> {str(new_rn)}')
for old, new in zip(rn, new_rn):
old.intersection_update(new)
return changed
def update_ranges(relations: List[Tuple[List[int], List[str], Callable]],
ranges: List[List[Set[str]]]):
changed = False
for ins, wns, callable_object, *_ in relations:
changed |= update_range(wns, [ranges[i] for i in ins], callable_object)
return changed
def solve_puzzle(table: List[List[str]],
relations: List[Union[Tuple[List[int], List[str], Union[Callable, Set[Callable], List[Callable]]],
Tuple[List[int], List[str], Union[Callable, Set[Callable], List[Callable]]]]],
*,
allow_complex=True,
max_solutions: Union[bool, None] = None) -> Tuple[bool, List[List[List[set]]], bool]:
if max_solutions is not None and max_solutions <= 0:
return False, [], False
new_relations = []
for ins, wns, callable_object, *other in relations:
if callable(callable_object):
callable_object = {callable_object}
if callable_object:
objs = frozenset(callable_object)
new_relations.append((ins, wns,
lambda *c, objs=objs: all(callable_object(*c) for callable_object in objs),
*other))
relations = new_relations
ranges = [[set(table[i]) for _ in range(len(table[i]))] for i in range(len(table))]
changed = True
while changed:
changed = update_ranges(relations, ranges)
# check for 'no solutions'
no_solutions = False
complex_task = False
for rng in ranges:
for rs in rng:
if len(rs) == 0:
no_solutions = True
break
elif len(rs) > 1:
complex_task = True
if no_solutions:
break
if no_solutions or not allow_complex:
return False, [ranges], False # status of ranges, ranges, is_complex_task
if not complex_task:
return True, [ranges], False # status of ranges, ranges, is_complex_task
# if complex task, then algorithm will find all possible solutions
q = collections.deque([ranges])
possible_solutions = []
while q:
current_ranges = q.popleft()
# check for 'no solutions' and 'solved'
no_solutions = False
solved = True
for rng in current_ranges:
for rs in rng:
if len(rs) == 0:
no_solutions = True
solved = False
break
elif len(rs) > 1:
solved = False
if no_solutions or not solved:
break
if no_solutions:
continue
if solved:
if current_ranges not in possible_solutions:
possible_solutions.append(current_ranges)
if max_solutions is not None and len(possible_solutions) >= max_solutions:
break
continue
# generate new ranges
for n_group, rng in enumerate(current_ranges):
founded = False
for n_x, rs in enumerate(rng):
if len(rs) > 1:
founded = True
for r in rs:
new_ranges = [[x.copy() for x in row] for row in current_ranges]
new_ranges[n_group][n_x] = {r}
changed = True
while changed:
changed = update_ranges(relations, new_ranges)
q.append(new_ranges)
break
# if one group contained uncertainties, then other groups will be considered in ranges appended in q
if founded:
break
if possible_solutions:
return True, possible_solutions, True # status of ranges, ranges, is_complex_task
else:
return False, [ranges], True # status of ranges, ranges, is_complex_task
def solve_einstein_riddle():
print("Einstein's Riddle")
task = ' ' * 4 + """
1. The Englishman lives in the red house.
2. The Swede keeps dogs.
3. The Dane drinks tea.
4. The green house is just to the left of the white one.
5. The owner of the green house drinks coffee.
6. The Pall Mall smoker keeps birds.
7. The owner of the yellow house smokes Dunhills.
8. The man in the center house drinks milk.
9. The Norwegian lives in the first house.
10. The Blend smoker has a neighbor who keeps cats.
11. The man who smokes Blue Masters drinks bier.
12. The man who keeps horses lives next to the Dunhill smoker.
13. The German smokes Prince.
14. The Norwegian lives next to the blue house.
15. The Blend smoker has a neighbor who drinks water.
""".strip()
print('Task:')
print(task)
classified_objects = [
['Englishman', 'Swede', 'Dane', 'Norwegian', 'German'],
['red', 'green', 'white', 'yellow', 'blue'],
['dogs', 'birds', 'cats', 'horses', 'fishes'],
['tea', 'coffee', 'milk', 'bier', 'water'],
['Pall Mall', 'Dunhill', 'Blend', 'Blue Masters', 'Prince']
]
center = len(classified_objects[0]) // 2
rules_for_relations = [
({'neighbor', 'next'}, lambda c1, c2: c1 == c2 - 1 or c1 == c2 + 1),
('first', lambda c1: c1 == 0),
('center', lambda c1, center=center: c1 == center),
('left', lambda c1, c2: c1 == c2 - 1),
({'live', 'keep', 'drink', 'smoke'}, lambda c1, c2: c1 == c2),
]
relations = []
for line in task.splitlines(keepends=False):
founded_objects = []
for n_group, group in enumerate(classified_objects):
for item in group:
if item in line:
founded_objects.append((line.index(item), n_group, item))
founded_objects.sort()
founded_relations = set()
for relations_strings, callable_object in rules_for_relations:
if type(relations_strings) is not set:
relations_strings = {relations_strings}
for relation_string in relations_strings:
if relation_string in line:
founded_relations.add(callable_object)
break
if founded_relations:
break
if founded_objects:
relations.append(([token[1] for token in founded_objects],
[token[2] for token in founded_objects],
founded_relations))
t1 = time.perf_counter()
status, solutions, complex_status = solve_puzzle(classified_objects, relations)
t2 = time.perf_counter()
for solution in solutions:
print('Solution status: ', status and 'SOLVED' or 'NO SOLUTION', ', ',
complex_status and 'COMPLEX TASK' or 'NORMAL TASK',
f' [{(t2 - t1):.6f} sec.]', sep='')
if status:
solution = [[next(iter(x)) for x in row] for row in solution]
print(format_table(solution))
else:
print(solution)
def solve_zebra_puzzle():
print('Zebra Puzzle')
task = ' ' * 4 + """
1. There are five houses.
2. The Englishman lives in the red house.
3. The Spaniard owns the dog.
4. Coffee is drunk in the green house.
5. The Ukrainian drinks tea.
6. The green house is immediately to the right of the ivory house.
7. The Old Gold smoker owns snails.
8. Kools are smoked in the yellow house.
9. Milk is drunk in the middle house.
10. The Norwegian lives in the first house.
11. The man who smokes Chesterfields lives in the house next to the man with the fox.
12. Kools are smoked in the house next to the house where the horse is kept.
13. The Lucky Strike smoker drinks orange juice.
14. The Japanese smokes Parliaments.
15. The Norwegian lives next to the blue house.
""".strip()
print('Task:')
print(task)
classified_objects = [
['Englishman', 'Spaniard', 'Ukrainian', 'Norwegian', 'Japanese'],
['red', 'green', 'ivory', 'yellow', 'blue'],
['dog', 'snails', 'fox', 'horse', 'zebra'],
['Coffee', 'tea', 'Milk', 'orange juice', 'water'],
['Old Gold', 'Kools', 'Chesterfields', 'Lucky Strike', 'Parliaments']
]
center = len(classified_objects[0]) // 2
rules_for_relations = [
('first', lambda c1: c1 == 0),
('middle', lambda c1, center=center: c1 == center),
('next', lambda c1, c2: c1 == c2 - 1 or c1 == c2 + 1),
('right', lambda c1, c2: c1 == c2 + 1),
({'live', 'own', 'drink', 'drunk', 'smoke'}, lambda c1, c2: c1 == c2),
]
relations = []
for line in task.splitlines(keepends=False):
founded_objects = []
for n_group, group in enumerate(classified_objects):
for item in group:
if item in line:
founded_objects.append((line.index(item), n_group, item))
founded_objects.sort()
founded_relations = set()
for relations_strings, callable_object in rules_for_relations:
if type(relations_strings) is not set:
relations_strings = {relations_strings}
for relation_string in relations_strings:
if relation_string in line:
founded_relations.add(callable_object)
break
if founded_relations:
break
if founded_objects:
relations.append(([token[1] for token in founded_objects],
[token[2] for token in founded_objects],
founded_relations))
t1 = time.perf_counter()
status, solutions, complex_status = solve_puzzle(classified_objects, relations)
t2 = time.perf_counter()
for solution in solutions:
print('Solution status: ', status and 'SOLVED' or 'NO SOLUTION', ', ',
complex_status and 'COMPLEX TASK' or 'NORMAL TASK',
f' [{(t2 - t1):.6f} sec.]', sep='')
if status:
solution = [[next(iter(x)) for x in row] for row in solution]
print(format_table(solution))
else:
print(solution)
def solve_blood_donation_puzzle():
print('Blood Donation Puzzle')
task = ' ' * 4 + """
1. The A+ donor is next to the B+ donor.
2. Brooke is at one of the ends.
3. The woman wearing a Black shirt is somewhere to the left of the 150 lb woman.
4. The Actress is next to the Chef.
5. Kathleen is 40 years old.
6. The Florist is somewhere to the right of the woman wearing the purple shirt.
7. The oldest year-old donor weighs 130 lb.
8. Brooke is next to Nichole.
9. The 35-year-old woman is exactly to the left of the 30-year-old woman.
10. The 120 lb donor is somewhere between the the O- donor and the 150 lb donor, in that order.
11. Kathleen is at one of the ends.
12. The woman wearing the purple shirt is somewhere to the right of the woman wearing the green shirt.
13. The B+ donor weighs 140 lb.
14. The youngest woman is next to the 30-year-old woman.
15. The woman considered AB+ universal recipient is exactly to the left of the A+ donor.
16. Meghan is somewhere to the right of the woman wearing the purple shirt.
17. The woman wearing the green shirt is somewhere between the Actress and the woman wearing the red shirt, \
in that order.
18. At one of the ends is the 130 lb woman.
19. The O- universal donor is 35 years old.
20. The Florist is somewhere between the Actress and the Engineer, in that order.
21. The woman wearing the blue shirt is somewhere to the left of the woman wearing the red shirt.
22. The AB+ donor is next to the youngest woman.
""".strip()
print('Task:')
print(task)
classified_objects = [
[' A+', ' AB+', ' B+', ' B-', ' O-'],
[' Black ', ' blue ', ' green ', ' purple ', ' red '],
['Andrea', 'Brooke', 'Kathleen', 'Meghan', 'Nichole'],
[' 25', ' 30', ' 35', ' 40', ' 45'],
[' 120', ' 130', ' 140', ' 150', ' 160'],
['Actress', 'Chef', 'Engineer', 'Florist', 'Policewoman']
]
task = task.replace('youngest', '25').replace('oldest', '45')
end = len(classified_objects[0]) - 1
rules_for_relations = [
('next', lambda c1, c2: c1 == c2 - 1 or c1 == c2 + 1),
('ends', lambda c1: c1 == 0 or c1 == end),
('somewhere to the left', lambda c1, c2: c1 < c2),
('somewhere to the right', lambda c1, c2: c1 > c2),
('left', lambda c1, c2: c1 == c2 - 1),
('right', lambda c1, c2: c1 == c2 + 1),
('between', lambda c1, c2, c3: c2 < c1 < c3 or c3 < c1 < c2),
({'is', 'weighs'}, lambda c1, c2: c1 == c2),
]
relations = []
for line in task.splitlines(keepends=False):
founded_objects = []
for n_group, group in enumerate(classified_objects):
for item in group:
if item in line:
founded_objects.append((line.index(item), n_group, item))
founded_objects.sort()
founded_relations = set()
for relations_strings, callable_object in rules_for_relations:
if type(relations_strings) is not set:
relations_strings = {relations_strings}
for relation_string in relations_strings:
if relation_string in line:
founded_relations.add(callable_object)
break
if founded_relations:
break
if founded_objects:
relations.append(([token[1] for token in founded_objects],
[token[2] for token in founded_objects],
founded_relations))
t1 = time.perf_counter()
status, solutions, complex_status = solve_puzzle(classified_objects, relations)
t2 = time.perf_counter()
for solution in solutions:
print('Solution status: ', status and 'SOLVED' or 'NO SOLUTION', ', ',
complex_status and 'COMPLEX TASK' or 'NORMAL TASK',
f' [{(t2 - t1):.6f} sec.]', sep='')
if status:
solution = [[next(iter(x)).strip() for x in row] for row in solution]
print(format_table(solution))
else:
print(solution)
if __name__ == '__main__':
print('=' * 42)
solve_einstein_riddle()
print('=' * 42)
solve_zebra_puzzle()
print('=' * 42)
solve_blood_donation_puzzle()
print('=' * 42)