Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Lab1, Part1: Assertion fails #116

Open
Madina-S opened this issue Feb 24, 2023 · 15 comments · May be fixed by #118
Open

Lab1, Part1: Assertion fails #116

Madina-S opened this issue Feb 24, 2023 · 15 comments · May be fixed by #118

Comments

@Madina-S
Copy link

Madina-S commented Feb 24, 2023

In "### Defining a network Layer ###" while defining OurDenseLayer class, even in solution

AssertionError                            Traceback (most recent call last)
[<ipython-input-3-19850ceade07>](https://z1pxgxqagka-496ff2e9c6d22116-0-colab.googleusercontent.com/outputframe.html?vrz=colab-20230223-060147-RC00_511737765#) in <module>
     36 # test the output!
     37 print(y.numpy())
---> 38 mdl.lab1.test_custom_dense_layer_output(y)

3 frames
[/usr/local/lib/python3.8/dist-packages/numpy/testing/_private/utils.py](https://z1pxgxqagka-496ff2e9c6d22116-0-colab.googleusercontent.com/outputframe.html?vrz=colab-20230223-060147-RC00_511737765#) in assert_array_compare(comparison, x, y, err_msg, verbose, header, precision, equal_nan, equal_inf)
    842                                 verbose=verbose, header=header,
    843                                 names=('x', 'y'), precision=precision)
--> 844             raise AssertionError(msg)
    845     except ValueError:
    846         import traceback

AssertionError: 
Arrays are not almost equal to 7 decimals
[FAIL] output is of incorrect value. expected [[0.31251222 0.12787536 0.9313476 ]] but got [[0.2697859  0.45750418 0.66536945]]
Mismatched elements: 3 / 3 (100%)
Max absolute difference: 0.32962883
Max relative difference: 0.72049356
 x: array([[0.3125122, 0.1278754, 0.9313476]], dtype=float32)
 y: array([[0.2697859, 0.4575042, 0.6653695]], dtype=float32)```
@sm1899
Copy link

sm1899 commented Mar 9, 2023

global seed alone fails to ensure reproducibility, probably have to specify an operation-level seed to get the same result

@xubinlikesleeping
Copy link

hi, i got the same question, did you get this done!

@danielkon96
Copy link

Ran into the same exact issue.

@highel
Copy link

highel commented Mar 26, 2023

It sems that to get deterministic behavior in the latest Tensor Flow you need to use

tf.keras.utils.set_random_seed(1)
tf.config.experimental.enable_op_determinism()

However this will not solve the problem, as you need to recalculate the results in test library anyway

@GKG1312
Copy link

GKG1312 commented Mar 29, 2023

Getting same issue here:


AssertionError Traceback (most recent call last)
in
34 # test the output!
35 print(y.numpy())
---> 36 mdl.lab1.test_custom_dense_layer_output(y)

3 frames
/usr/local/lib/python3.9/dist-packages/numpy/testing/_private/utils.py in assert_array_compare(comparison, x, y, err_msg, verbose, header, precision, equal_nan, equal_inf)
842 verbose=verbose, header=header,
843 names=('x', 'y'), precision=precision)
--> 844 raise AssertionError(msg)
845 except ValueError:
846 import traceback

AssertionError:
Arrays are not almost equal to 7 decimals
[FAIL] output is of incorrect value. expected [[0.14785646 0.23566338 0.8568521 ]] but got [[0.2697859 0.45750418 0.66536945]]
Mismatched elements: 3 / 3 (100%)
Max absolute difference: 0.2218408
Max relative difference: 0.4848935
x: array([[0.1478565, 0.2356634, 0.8568521]], dtype=float32)
y: array([[0.2697859, 0.4575042, 0.6653695]], dtype=float32)

Did anyone get any solution?

prashantkhurana added a commit to prashantkhurana/introtodeeplearning that referenced this issue Mar 30, 2023
1) tf.random.set_seed only sets the global seed https://www.tensorflow.org/api_docs/python/tf/random/set_seed
2) we need to set keras set_random_seed to make all seeds be deterministic. docs : https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism, https://www.tensorflow.org/api_docs/python/tf/keras/utils/set_random_seed.

enable_op_determinism might not be needed here but its good to have.

fixes MITDeepLearning#116
@prashantkhurana prashantkhurana linked a pull request Mar 30, 2023 that will close this issue
@highel
Copy link

highel commented Apr 2, 2023

Yes, the suggested PR by prashantkhurana works for me. Maybe the version of mitdeeplearning should be upped.

I use NVidia CUDA RTX A5000 with x64 ubuntu, tensorflow 2.12, python 3.11

UPD: also tested on Apple M1 Pro tensorflow-metal w tensorflow 2.12

@jilagan
Copy link

jilagan commented Apr 2, 2023

I'm getting the same error using Google Colab.

@zurichantonpopov
Copy link

# Google Colab
class OurDenseLayer(tf.keras.layers.Layer):
  def __init__(self, n_output_nodes):
    super(OurDenseLayer, self).__init__()
    self.n_output_nodes = n_output_nodes

  def build(self, input_shape):
    d = int(input_shape[-1])
    # Define and initialize parameters: a weight matrix W and bias b
    # Note that parameter initialization is random!
    self.W = self.add_weight("weight", shape=[d, self.n_output_nodes]) # note the dimensionality
    self.b = self.add_weight("bias", shape=[1, self.n_output_nodes]) # note the dimensionality

  def call(self, x):
    '''TODO: define the operation for z (hint: use tf.matmul)'''
    z = tf.matmul(x, self.W) + self.b

    '''TODO: define the operation for out (hint: use tf.sigmoid)'''
    y = tf.sigmoid(z)
    return y

# Since layer parameters are initialized randomly, we will set a random seed for reproducibility
tf.random.set_seed(1)
layer = OurDenseLayer(3)
layer.build((1,2))
x_input = tf.constant([[1,2.]], shape=(1,2))
y = layer.call(x_input)

# test the output!
print(y.numpy())
mdl.lab1.test_custom_dense_layer_output(y)

AssertionError: 
Arrays are not almost equal to 7 decimals
[FAIL] output is of incorrect value. expected [[0.2086701  0.68627274 0.14512508]] but got [[0.2697859  0.45750418 0.66536945]]
Mismatched elements: 3 / 3 (100%)
Max absolute difference: 0.52024436
Max relative difference: 0.78188795
 x: array([[0.2086701, 0.6862727, 0.1451251]], dtype=float32)
 y: array([[0.2697859, 0.4575042, 0.6653695]], dtype=float32)

same here

@zaineb
Copy link

zaineb commented Apr 5, 2023

Getting the same assertion error:

Arrays are not almost equal to 7 decimals
[FAIL] output is of incorrect value. expected [[0.9217561 0.39742658 0.14384568]] but got [[0.2697859 0.45750418 0.66536945]]
Mismatched elements: 3 / 3 (100%)

@rlamba89
Copy link

rlamba89 commented Apr 8, 2023

Getting same assertion error

@adlternative
Copy link

adlternative commented Apr 18, 2023

It looks like #118 has solved the issue. When will we merge it?

@oSamDavis
Copy link

Same error getting on Google colab. Any fix yet?

@zaineb
Copy link

zaineb commented Jun 20, 2023

Still getting this error on colab even after replacing tf.random.set_seed(1) with
tf.keras.utils.set_random_seed(1)
tf.config.experimental.enable_op_determinism()

@highel
Copy link

highel commented Jun 21, 2023

Still getting this error on colab even after replacing tf.random.set_seed(1) with tf.keras.utils.set_random_seed(1) tf.config.experimental.enable_op_determinism()

I think is's because mitdeeplearning library file mitdeeplearning/lab1.py need to be patched also with the new values but in colab you use remote version, this should work after version update. See the PR above. I tested in both on x64 and Apple M1 so likely it will work.

@mkx000
Copy link

mkx000 commented Sep 1, 2023

same error

/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: should_run_async will not call transform_cell automatically in the future. Please pass the result to transformed_cell argument and any exception that happen during thetransform in preprocessing_exc_tuple in IPython 7.17 and above.
and should_run_async(code)
/usr/lib/python3.10/random.py:370: DeprecationWarning: non-integer arguments to randrange() have been deprecated since Python 3.10 and will be removed in a subsequent version
return self.randrange(a, b+1)
[[0.27064407 0.1826951 0.50374055]]

AssertionError Traceback (most recent call last)
in <cell line: 40>()
38 # test the output!
39 print(y.numpy())
---> 40 mdl.lab1.test_custom_dense_layer_output(y)

1 frames
[... skipping hidden 2 frame]

/usr/local/lib/python3.10/dist-packages/numpy/testing/_private/utils.py in assert_array_compare(comparison, x, y, err_msg, verbose, header, precision, equal_nan, equal_inf)
842 verbose=verbose, header=header,
843 names=('x', 'y'), precision=precision)
--> 844 raise AssertionError(msg)
845 except ValueError:
846 import traceback

AssertionError:
Arrays are not almost equal to 7 decimals
[FAIL] output is of incorrect value. expected [[0.27064407 0.1826951 0.50374055]] but got [[0.2697859 0.45750418 0.66536945]]
Mismatched elements: 3 / 3 (100%)
Max absolute difference: 0.27480906
Max relative difference: 0.60067004
x: array([[0.2706441, 0.1826951, 0.5037405]], dtype=float32)
y: array([[0.2697859, 0.4575042, 0.6653695]], dtype=float32)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.