-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_critic.py
486 lines (427 loc) · 24.3 KB
/
train_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
from __future__ import absolute_import, division, print_function
import os
import time
from collections import OrderedDict
import numpy as np
import six
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.learn.python.learn.datasets import mnist
from tensorflow.python.training.moving_averages import assign_moving_average
from attack import deepfool, high_confidence_attack, high_confidence_attack_unrolled
from models import create_model, register_model_flags
from utils import (NanError, batch_iterator, binary_accuracy, lr_decay,
norm_penalty, print_results_str, register_experiment_flags,
register_metrics, save_checkpoint, save_images,
select_balanced_subset, setup_experiment)
flags = tf.flags
logging = tf.logging
register_experiment_flags()
register_model_flags(model='mlp')
register_model_flags(model="critic_mlp", activation_fn="lrelu", prefix='critic_')
# tensorflow
flags.DEFINE_float("gpu_memory", 1.0, "gpu memory for session")
# data parameters
flags.DEFINE_integer("batch_size", 100, "batch size")
flags.DEFINE_integer("test_batch_size", 100, "test batch size")
flags.DEFINE_boolean("validation", False, "if true, train model using whole train dataset")
flags.DEFINE_integer("validation_size", 10000, "training size")
# attack parameters
flags.DEFINE_integer("df_iter", 50, "maximum number of iterations for deepfool attack")
flags.DEFINE_float("df_clip", 0.5, "clip per iteration of deepfool")
flags.DEFINE_float("df_overshoot", 0.02, "overshoot for deepfool iteration")
flags.DEFINE_integer("attack_iter", 5, "number of iterations for the attack")
flags.DEFINE_string("attack_confidence", "class_running_mean", "attack target mistake confidence")
flags.DEFINE_float("attack_label_smoothing", 0.0, "attack label smoothing")
flags.DEFINE_float("attack_overshoot", 0.05, "constant to overshoot for attack")
flags.DEFINE_boolean("attack_random", False, "attack random target samples from output softmax")
flags.DEFINE_boolean("attack_uniform", False, "attack target uniformly")
flags.DEFINE_float("val_attack_confidence", 0.8, "attack target mistake confidence")
# training parameters
flags.DEFINE_integer("pretrain_niter", 1, "number of epochs to pretrain model for")
flags.DEFINE_integer("niter", 100, "number of epochs to train for")
flags.DEFINE_integer("critic_steps", 1, "number of updates per classifier update")
# lr parameters
flags.DEFINE_float("lr", 0.0005, "learning rate for classifier (default: 0.0005)")
flags.DEFINE_string("lr_decay", "step", "learning rate decay option (exp, step, schedule, no)")
flags.DEFINE_float("lr_decay_factor", 0.5, "learning rate decay factor")
flags.DEFINE_integer("lr_decay_step", 40, "learning rate decay step")
# critic lr parameters
flags.DEFINE_float("critic_lr", 0.001, "critic learning rate (default: 0.001)")
flags.DEFINE_string("critic_lr_decay", "step", "learning rate decay option (exp, step, schedule, no)")
flags.DEFINE_float("critic_lr_decay_factor", 0.5, "critic learning rate decay factor")
flags.DEFINE_integer("critic_lr_decay_step", 40, "learning rate decay step for critic")
# regularization parameters
flags.DEFINE_float("lmbd", 0.5, "gan weight for learning model")
flags.DEFINE_float("lmbd_rec_l1", 0, "weight for reconstruction penalty")
flags.DEFINE_float("lmbd_rec_l2", 0.01, "weight for reconstruction penalty")
flags.DEFINE_float("lmbd_grad", 10.0, "weight for gradient penalty")
flags.DEFINE_float("weight_decay", 0, "weight decay")
flags.DEFINE_integer("summary_frequency", 1, "summarize frequency (in epochs)")
flags.DEFINE_integer("checkpoint_frequency", -1, "frequency to save model (in epochs)")
FLAGS = tf.app.flags.FLAGS
def main(unused_args):
assert len(unused_args) == 1, unused_args
setup_experiment(logging, FLAGS, "critic_model")
if FLAGS.validation:
mnist_ds = mnist.read_data_sets(
FLAGS.data_dir, dtype=tf.float32, reshape=False, validation_size=0)
val_ds = mnist_ds.test
else:
mnist_ds = mnist.read_data_sets(FLAGS.data_dir, dtype=tf.float32, reshape=False,
validation_size=FLAGS.validation_size)
val_ds = mnist_ds.validation
train_ds = mnist_ds.train
val_ds = mnist_ds.validation
test_ds = mnist_ds.test
num_classes = FLAGS.num_classes
img_shape = [None, 1, 28, 28]
X = tf.placeholder(tf.float32, shape=img_shape, name='X')
# placeholder to avoid recomputation of adversarial images for critic
X_hat_h = tf.placeholder(tf.float32, shape=img_shape, name='X_hat')
y = tf.placeholder(tf.int32, shape=[None], name='y')
y_onehot = tf.one_hot(y, num_classes)
reduce_ind = list(range(1, X.get_shape().ndims))
# test/validation inputs
X_v = tf.placeholder(tf.float32, shape=img_shape, name='X_v')
y_v = tf.placeholder(tf.int32, shape=[None], name='y_v')
y_v_onehot = tf.one_hot(y_v, num_classes)
# classifier model
model = create_model(FLAGS, name=FLAGS.model_name)
def test_model(x, **kwargs):
return model(x, train=False, **kwargs)
# generator
def generator(inputs, confidence, targets=None):
return high_confidence_attack_unrolled(
lambda x: model(x)['logits'], inputs, targets=targets,
confidence=confidence, max_iter=FLAGS.attack_iter,
over_shoot=FLAGS.attack_overshoot,
attack_random=FLAGS.attack_random,
attack_uniform=FLAGS.attack_uniform,
attack_label_smoothing=FLAGS.attack_label_smoothing)
def test_generator(inputs, confidence, targets=None):
return high_confidence_attack(
lambda x: test_model(x)['logits'], inputs, targets=targets,
confidence=confidence, max_iter=FLAGS.df_iter,
over_shoot=FLAGS.df_overshoot, random=FLAGS.attack_random,
uniform=FLAGS.attack_uniform, clip_dist=FLAGS.df_clip)
# discriminator
critic = create_model(FLAGS, prefix='critic_', name='critic')
# classifier outputs
outs_x = model(X)
outs_x_v = test_model(X_v)
params = tf.trainable_variables()
model_weights = [param for param in params if "weights" in param.name]
vars = tf.model_variables()
target_conf_v = [None]
if FLAGS.attack_confidence == "same":
# set the target confidence to the confidence of the original prediction
target_confidence = outs_x['conf']
target_conf_v[0] = target_confidence
elif FLAGS.attack_confidence == "class_running_mean":
# set the target confidence to the mean confidence of the specific target
# use running mean estimate
class_conf_mean = tf.Variable(np.ones(num_classes, dtype=np.float32))
batch_conf_mean = tf.unsorted_segment_mean(
outs_x['conf'], outs_x['pred'], num_classes)
# if batch does not contain predictions for the specific target
# (zeroes), replace zeroes with stored class mean (previous batch)
batch_conf_mean = tf.where(
tf.not_equal(batch_conf_mean, 0), batch_conf_mean, class_conf_mean)
# update class confidence mean
class_conf_mean = assign_moving_average(class_conf_mean, batch_conf_mean, 0.5)
# init class confidence during pre-training
tf.add_to_collection("PREINIT_OPS", class_conf_mean)
def target_confidence(targets_onehot):
targets = tf.argmax(targets_onehot, axis=1)
check_conf = tf.Assert(tf.reduce_all(tf.not_equal(class_conf_mean, 0)), [class_conf_mean])
with tf.control_dependencies([check_conf]):
t = tf.gather(class_conf_mean, targets)
target_conf_v[0] = t
return tf.stop_gradient(t)
else:
target_confidence = float(FLAGS.attack_confidence)
target_conf_v[0] = target_confidence
X_hat = generator(X, target_confidence)
outs_x_hat = model(X_hat)
# select examples for which attack succeeded (changed the prediction)
X_hat_filter = tf.not_equal(outs_x['pred'], outs_x_hat['pred'])
X_hat_f = tf.boolean_mask(X_hat, X_hat_filter)
X_f = tf.boolean_mask(X, X_hat_filter)
outs_x_f = model(X_f)
outs_x_hat_f = model(X_hat_f)
X_hatd = tf.stop_gradient(X_hat)
X_rec = generator(X_hatd, outs_x['conf'], outs_x['pred'])
X_rec_f = tf.boolean_mask(X_rec, X_hat_filter)
# validation/test adversarial examples
X_v_hat = test_generator(X_v, FLAGS.val_attack_confidence)
X_v_hatd = tf.stop_gradient(X_v_hat)
X_v_rec = test_generator(X_v_hatd, outs_x_v['conf'], targets=outs_x_v['pred'])
X_v_hat_df = deepfool(lambda x: test_model(x)['logits'], X_v, y_v,
max_iter=FLAGS.df_iter, clip_dist=FLAGS.df_clip)
X_v_hat_df_all = deepfool(lambda x: test_model(x)['logits'], X_v,
max_iter=FLAGS.df_iter, clip_dist=FLAGS.df_clip)
y_hat = outs_x['pred']
y_adv = outs_x_hat['pred']
y_adv_f = outs_x_hat_f['pred']
tf.summary.histogram('y_data', y, collections=["model_summaries"])
tf.summary.histogram('y_hat', y_hat, collections=["model_summaries"])
tf.summary.histogram('y_adv', y_adv, collections=["model_summaries"])
# critic outputs
critic_outs_x = critic(X)
critic_outs_x_hat = critic(X_hat_f)
critic_params = list(set(tf.trainable_variables()) - set(params))
critic_vars = list(set(tf.trainable_variables()) - set(vars))
# binary logits for a specific target
logits_data = critic_outs_x['logits']
logits_data_flt = tf.reshape(logits_data, (-1,))
z_data = tf.gather(logits_data_flt, tf.range(tf.shape(X)[0]) * num_classes + y)
logits_adv = critic_outs_x_hat['logits']
logits_adv_flt = tf.reshape(logits_adv, (-1,))
z_adv = tf.gather(logits_adv_flt, tf.range(tf.shape(X_hat_f)[0]) * num_classes + y_adv_f)
# classifier/generator losses
nll = tf.reduce_mean(tf.losses.softmax_cross_entropy(y_onehot, outs_x['logits']))
nll_v = tf.reduce_mean(tf.losses.softmax_cross_entropy(y_v_onehot, outs_x_v['logits']))
# gan losses
gan = tf.losses.sigmoid_cross_entropy(tf.ones_like(z_adv), z_adv)
rec_l1 = tf.reduce_mean(tf.reduce_sum(tf.abs(X_f - X_rec_f), axis=reduce_ind))
rec_l2 = tf.reduce_mean(tf.reduce_sum((X_f - X_rec_f) ** 2, axis=reduce_ind))
weight_decay = slim.apply_regularization(slim.l2_regularizer(1.0), model_weights[:-1])
pretrain_loss = nll + 5e-6 * weight_decay
loss = nll + FLAGS.lmbd * gan
if FLAGS.lmbd_rec_l1 > 0:
loss += FLAGS.lmbd_rec_l1 * rec_l1
if FLAGS.lmbd_rec_l2 > 0:
loss += FLAGS.lmbd_rec_l2 * rec_l2
if FLAGS.weight_decay > 0:
loss += FLAGS.weight_decay * weight_decay
# critic loss
critic_gan_data = tf.losses.sigmoid_cross_entropy(tf.ones_like(z_data), z_data)
# use placeholder for X_hat to avoid recomputation of adversarial noise
y_adv_h = model(X_hat_h)['pred']
logits_adv_h = critic(X_hat_h)['logits']
logits_adv_flt_h = tf.reshape(logits_adv_h, (-1,))
z_adv_h = tf.gather(logits_adv_flt_h, tf.range(tf.shape(X_hat_h)[0]) * num_classes + y_adv_h)
critic_gan_adv = tf.losses.sigmoid_cross_entropy(tf.zeros_like(z_adv_h), z_adv_h)
critic_gan = critic_gan_data + critic_gan_adv
# Gulrajani discriminator regularizer (we do not interpolate)
critic_grad_data = tf.gradients(z_data, X)[0]
critic_grad_adv = tf.gradients(z_adv_h, X_hat_h)[0]
critic_grad_penalty = norm_penalty(critic_grad_adv) + norm_penalty(critic_grad_data)
critic_loss = critic_gan + FLAGS.lmbd_grad * critic_grad_penalty
# classifier model_metrics
err = 1 - slim.metrics.accuracy(outs_x['pred'], y)
conf = tf.reduce_mean(outs_x['conf'])
err_hat = 1 - slim.metrics.accuracy(test_model(X_hat)['pred'], outs_x['pred'])
err_hat_f = 1 - slim.metrics.accuracy(test_model(X_hat_f)['pred'], outs_x_f['pred'])
err_rec = 1 - slim.metrics.accuracy(test_model(X_rec)['pred'], outs_x['pred'])
conf_hat = tf.reduce_mean(test_model(X_hat)['conf'])
conf_hat_f = tf.reduce_mean(test_model(X_hat_f)['conf'])
conf_rec = tf.reduce_mean(test_model(X_rec)['conf'])
err_v = 1 - slim.metrics.accuracy(outs_x_v['pred'], y_v)
conf_v_hat = tf.reduce_mean(test_model(X_v_hat)['conf'])
l2_hat = tf.sqrt(tf.reduce_sum((X_f - X_hat_f) ** 2, axis=reduce_ind))
tf.summary.histogram('l2_hat', l2_hat, collections=["model_summaries"])
# critic model_metrics
critic_err_data = 1 - binary_accuracy(z_data, tf.ones(tf.shape(z_data), tf.bool), 0.0)
critic_err_adv = 1 - binary_accuracy(z_adv, tf.zeros(tf.shape(z_adv), tf.bool), 0.0)
# validation model_metrics
err_df = 1 - slim.metrics.accuracy(test_model(X_v_hat_df)['pred'], y_v)
err_df_all = 1 - slim.metrics.accuracy(test_model(X_v_hat_df_all)['pred'],
outs_x_v['pred'])
l2_v_hat = tf.sqrt(tf.reduce_sum((X_v - X_v_hat)**2, axis=reduce_ind))
l2_v_rec = tf.sqrt(tf.reduce_sum((X_v - X_v_rec) ** 2, axis=reduce_ind))
l1_v_rec = tf.reduce_sum(tf.abs(X_v - X_v_rec), axis=reduce_ind)
l2_df = tf.sqrt(tf.reduce_sum((X_v - X_v_hat_df) ** 2, axis=reduce_ind))
l2_df_norm = l2_df / tf.sqrt(tf.reduce_sum(X_v ** 2, axis=reduce_ind))
l2_df_all = tf.sqrt(tf.reduce_sum((X_v - X_v_hat_df_all) ** 2, axis=reduce_ind))
l2_df_norm_all = l2_df_all / tf.sqrt(tf.reduce_sum(X_v ** 2, axis=reduce_ind))
tf.summary.histogram('l2_df', l2_df, collections=["adv_summaries"])
tf.summary.histogram('l2_df_norm', l2_df_norm, collections=["adv_summaries"])
# model_metrics
pretrain_model_metrics = OrderedDict([('nll', nll),
('weight_decay', weight_decay),
('err', err)])
model_metrics = OrderedDict([('loss', loss),
('nll', nll),
('l2_hat', tf.reduce_mean(l2_hat)),
('gan', gan),
('rec_l1', rec_l1),
('rec_l2', rec_l2),
('weight_decay', weight_decay),
('err', err),
('conf', conf),
('err_hat', err_hat),
('err_hat_f', err_hat_f),
('conf_t', tf.reduce_mean(target_conf_v[0])),
('conf_hat', conf_hat),
('conf_hat_f', conf_hat_f),
('err_rec', err_rec),
('conf_rec', conf_rec)])
critic_metrics = OrderedDict([('c_loss', critic_loss),
('c_gan', critic_gan),
('c_gan_data', critic_gan_data),
('c_gan_adv', critic_gan_adv),
('c_grad_norm', critic_grad_penalty),
('c_err_adv', critic_err_adv),
('c_err_data', critic_err_data)])
val_metrics = OrderedDict([('nll', nll_v),
('err', err_v)])
adv_metrics = OrderedDict([('l2_df', tf.reduce_mean(l2_df)),
('l2_df_norm', tf.reduce_mean(l2_df_norm)),
('l2_df_all', tf.reduce_mean(l2_df_all)),
('l2_df_all_norm', tf.reduce_mean(l2_df_norm_all)),
('l2_hat', tf.reduce_mean(l2_v_hat)),
('conf_hat', conf_v_hat),
('l1_rec', tf.reduce_mean(l1_v_rec)),
('l2_rec', tf.reduce_mean(l2_v_rec)),
('err_df', err_df),
('err_df_all', err_df_all)])
pretrain_metric_mean, pretrain_metric_upd = register_metrics(
pretrain_model_metrics, collections="pretrain_model_summaries")
metric_mean, metric_upd = register_metrics(
model_metrics, collections="model_summaries")
critic_metric_mean, critic_metric_upd = register_metrics(
critic_metrics, collections="critic_summaries")
val_metric_mean, val_metric_upd = register_metrics(
val_metrics, prefix="val_", collections="val_summaries")
adv_metric_mean, adv_metric_upd = register_metrics(
adv_metrics, collections="adv_summaries")
metrics_reset = tf.variables_initializer(tf.local_variables())
# training ops
lr = tf.Variable(FLAGS.lr, trainable=False)
critic_lr = tf.Variable(FLAGS.critic_lr, trainable=False)
tf.summary.scalar('lr', lr, collections=["model_summaries"])
tf.summary.scalar('critic_lr', critic_lr, collections=["critic_summaries"])
optimizer = tf.train.AdamOptimizer(learning_rate=lr, beta1=0.5)
preinit_ops = tf.get_collection("PREINIT_OPS")
with tf.control_dependencies(preinit_ops):
pretrain_solver = optimizer.minimize(pretrain_loss, var_list=params)
solver = optimizer.minimize(loss, var_list=params)
critic_solver = (tf.train.AdamOptimizer(learning_rate=critic_lr, beta1=0.5)
.minimize(critic_loss, var_list=critic_params))
# train
summary_images, summary_labels = select_balanced_subset(
train_ds.images, train_ds.labels, num_classes, num_classes)
summary_images = summary_images.transpose((0, 3, 1, 2))
save_path = os.path.join(FLAGS.samples_dir, 'orig.png')
save_images(summary_images, save_path)
if FLAGS.gpu_memory < 1.0:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory)
config = tf.ConfigProto(gpu_options=gpu_options)
else:
config = None
with tf.Session(config=config) as sess:
try:
# summaries
summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)
summaries = tf.summary.merge_all("model_summaries")
critic_summaries = tf.summary.merge_all("critic_summaries")
val_summaries = tf.summary.merge_all("val_summaries")
adv_summaries = tf.summary.merge_all("adv_summaries")
# initialization
tf.local_variables_initializer().run()
tf.global_variables_initializer().run()
# pretrain model
if FLAGS.pretrain_niter > 0:
logging.info("Model pretraining")
for epoch in range(1, FLAGS.pretrain_niter + 1):
train_iterator = batch_iterator(train_ds.images, train_ds.labels,
FLAGS.batch_size, shuffle=True)
sess.run(metrics_reset)
start_time = time.time()
for ind, (images, labels) in enumerate(train_iterator):
sess.run([pretrain_solver, pretrain_metric_upd],
feed_dict={X: images, y: labels})
str_bfr = six.StringIO()
str_bfr.write("Pretrain epoch [{}, {:.2f}s]:".format(epoch, time.time() - start_time))
print_results_str(str_bfr, pretrain_model_metrics.keys(),
sess.run(pretrain_metric_mean))
print_results_str(str_bfr, critic_metrics.keys(),
sess.run(critic_metric_mean))
logging.info(str_bfr.getvalue()[:-1])
# training
for epoch in range(1, FLAGS.niter + 1):
train_iterator = batch_iterator(train_ds.images, train_ds.labels,
FLAGS.batch_size, shuffle=True)
sess.run(metrics_reset)
start_time = time.time()
for ind, (images, labels) in enumerate(train_iterator):
batch_index = (epoch - 1) * (train_ds.images.shape[0] // FLAGS.batch_size) + ind
# train critic for several steps
X_hat_np = sess.run(X_hat, feed_dict={X: images})
for _ in range(FLAGS.critic_steps - 1):
sess.run([critic_solver], feed_dict={X: images, y: labels, X_hat_h: X_hat_np})
else:
summary = sess.run(
[critic_solver, critic_metric_upd, critic_summaries],
feed_dict={X: images, y: labels, X_hat_h: X_hat_np})[-1]
summary_writer.add_summary(summary, batch_index)
# train model
summary = sess.run([solver, metric_upd, summaries],
feed_dict={X: images, y: labels})[-1]
summary_writer.add_summary(summary, batch_index)
str_bfr = six.StringIO()
str_bfr.write("Train epoch [{}, {:.2f}s]:".format(epoch, time.time() - start_time))
print_results_str(str_bfr, model_metrics.keys(), sess.run(metric_mean))
print_results_str(str_bfr, critic_metrics.keys(), sess.run(critic_metric_mean))
logging.info(str_bfr.getvalue()[:-1])
val_iterator = batch_iterator(val_ds.images, val_ds.labels, 100, shuffle=False)
for images, labels in val_iterator:
summary = sess.run(
[val_metric_upd, val_summaries],
feed_dict={X_v: images, y_v: labels})[-1]
summary_writer.add_summary(summary, epoch)
str_bfr = six.StringIO()
str_bfr.write("Valid epoch [{}]:".format(epoch))
print_results_str(str_bfr, val_metrics.keys(), sess.run(val_metric_mean))
logging.info(str_bfr.getvalue()[:-1])
# learning rate decay
update_lr = lr_decay(lr, epoch)
if update_lr is not None:
sess.run(update_lr)
logging.debug("learning rate was updated to: {:.10f}".format(lr.eval()))
critic_update_lr = lr_decay(critic_lr, epoch, prefix='critic_')
if critic_update_lr is not None:
sess.run(critic_update_lr)
logging.debug("critic learning rate was updated to: {:.10f}".format(critic_lr.eval()))
if epoch % FLAGS.summary_frequency == 0:
samples_hat, samples_rec, samples_df, summary = sess.run(
[X_v_hat, X_v_rec, X_v_hat_df, adv_summaries, adv_metric_upd],
feed_dict={X_v: summary_images, y_v: summary_labels})[:-1]
summary_writer.add_summary(summary, epoch)
save_path = os.path.join(FLAGS.samples_dir, 'epoch_orig-%d.png' % epoch)
save_images(summary_images, save_path)
save_path = os.path.join(FLAGS.samples_dir, 'epoch-%d.png' % epoch)
save_images(samples_hat, save_path)
save_path = os.path.join(FLAGS.samples_dir, 'epoch_rec-%d.png' % epoch)
save_images(samples_rec, save_path)
save_path = os.path.join(FLAGS.samples_dir, 'epoch_df-%d.png' % epoch)
save_images(samples_df, save_path)
str_bfr = six.StringIO()
str_bfr.write("Summary epoch [{}]:".format(epoch))
print_results_str(str_bfr, adv_metrics.keys(), sess.run(adv_metric_mean))
logging.info(str_bfr.getvalue()[:-1])
if FLAGS.checkpoint_frequency != -1 and epoch % FLAGS.checkpoint_frequency == 0:
save_checkpoint(sess, vars, epoch=epoch)
save_checkpoint(sess, critic_vars, name="critic_model", epoch=epoch)
except KeyboardInterrupt:
logging.debug("Keyboard interrupt. Stopping training...")
except NanError as e:
logging.info(e)
finally:
sess.run(metrics_reset)
save_checkpoint(sess, vars)
save_checkpoint(sess, critic_vars, name="critic_model")
# final accuracy
test_iterator = batch_iterator(test_ds.images, test_ds.labels, 100, shuffle=False)
for images, labels in test_iterator:
sess.run([val_metric_upd],
feed_dict={X_v: images, y_v: labels})
str_bfr = six.StringIO()
str_bfr.write("Final epoch [{}]:".format(epoch))
for metric_name, metric_value in zip(val_metrics.keys(), sess.run(val_metric_mean)):
str_bfr.write(" {}: {:.6f},".format(metric_name, metric_value))
logging.info(str_bfr.getvalue()[:-1])
if __name__ == "__main__":
tf.app.run()