-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane.py
116 lines (88 loc) · 3.78 KB
/
lane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import cv2
import matplotlib.pyplot as plt
import numpy as np
import logging
import warnings
x = np.ones((1000, 1000)) * np.nan
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
foo = np.nanmean(x, axis=1)
image=cv2.imread('lane_image.jpg')
lane_image=np.copy(image)
hsv=cv2.cvtColor(lane_image, cv2.COLOR_BGR2HSV)
lower_white= np.array([0,0,0])
upper_white =np.array([0,0,255])
mask= cv2.inRange(hsv, lower_white, upper_white)
edges = cv2.Canny(mask, 200, 400)
def region_of_interest(edges):
height, width = edges.shape
mask = np.zeros_like(edges)
# only focus bottom half of the screen
polygon = np.array([[
(0, height * 1 / 2),
(width, height * 1 / 2),
(width, height),
(0, height),
]], np.int32)
cv2.fillPoly(mask, polygon, 255)
cropped_edges = cv2.bitwise_and(edges, mask)
return cropped_edges
def detect_line_segments(cropped_edges):
# tuning min_threshold, minLineLength, maxLineGap is a trial and error process by hand
rho = 1 # distance precision in pixel, i.e. 1 pixel
angle = np.pi / 180 # angular precision in radian, i.e. 1 degree
min_threshold = 10 # minimal of votes
line_segments = cv2.HoughLinesP(cropped_edges, rho, angle, min_threshold,
np.array([]), minLineLength=8, maxLineGap=4)
return line_segments
def average_slope_intercept(frame, line_segments):
"""
This function combines line segments into one or two lane lines
If all line slopes are < 0: then we only have detected left lane
If all line slopes are > 0: then we only have detected right lane
"""
lane_lines = []
if line_segments is None:
logging.info('No line_segment segments detected')
return lane_lines
height, width, _ = frame.shape
left_fit = []
right_fit = []
boundary = 1/3
left_region_boundary = width * (1 - boundary) # left lane line segment should be on left 2/3 of the screen
right_region_boundary = width * boundary # right lane line segment should be on left 2/3 of the screen
for line_segment in line_segments:
for x1, y1, x2, y2 in line_segment:
if x1 == x2:
logging.info('skipping vertical line segment (slope=inf): %s' % line_segment)
continue
fit = np.polyfit((x1, x2), (y1, y2), 1)
slope = fit[0]
intercept = fit[1]
if slope < 0:
if x1 < left_region_boundary and x2 < left_region_boundary:
left_fit.append((slope, intercept))
else:
if x1 > right_region_boundary and x2 > right_region_boundary:
right_fit.append((slope, intercept))
left_fit_average = np.average(left_fit, axis=0)
if len(left_fit) > 0:
lane_lines.append(make_points(frame, left_fit_average))
right_fit_average = np.average(right_fit, axis=0)
if len(right_fit) > 0:
lane_lines.append(make_points(frame, right_fit_average))
logging.debug('lane lines: %s' % lane_lines) # [[[316, 720, 484, 432]], [[1009, 720, 718, 432]]]
return lane_lines
def make_points(frame, line):
height, width, _ = frame.shape
slope, intercept = line
y1 = height # bottom of the frame
y2 = int(y1 * 1 / 2) # make points from middle of the frame down
# bound the coordinates within the frame
x1 = max(-width, min(2 * width, int((y1 - intercept) / slope)))
x2 = max(-width, min(2 * width, int((y2 - intercept) / slope)))
return [[x1, y1, x2, y2]]
roi = region_of_interest(edges)
line_segments = detect_line_segments(roi)
lane = average_slope_intercept(image , line_segments)
print (lane)