-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoneD_modal_test.py
437 lines (364 loc) · 17.7 KB
/
oneD_modal_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#!/bin/python -u
import numpy
import math
import unittest
import matplotlib.pyplot as plt
import Globals.configPaths
import Optimization.DistanceFunction.DistanceFunctionOptimization
from Optimization.DistanceFunction import OptimizationMaker
import Writers.VTKMeshWriter
import Geometry.FrechetDistance
import Geometry.ProjectionDistance
from Geometry.Curve import Curve
from Geometry.Curve import Curve2DPol
from Geometry.Curve import Curve1DPol
from Geometry.Curve import LogSpiral
from Geometry.Curve import Circle
from Geometry.Curve import Segment
import plotly.graph_objects as go
from Discretization.Meshers import CurveMesher,SurfaceMesher
from Writers.NumpyMeshWriter import NumpyMeshWriter
from Globals.configPython import *
import polynomial
import quadratures
def convergence_IO(nR, ne, value, pX, pU, title):
print("____________________________________________________________________\n")
print("----------------------- POLYNOMIAL DEGREES: X ",pX," T ",pU," ----------------")
print("____________________________________________________________________\n")
print("\n \t ",title,"\n\n")
print ("N\t E(x,t)\t ORDER sqrt(E) ORDER")
print("------------------------------------------------------------------------\n")
for r in range(nR + 1):
ne1 = pow(2, r) * ne
if r == 0:
print (ne1,"\t%1.3e"%value[r]," |","%1.3e"%numpy.sqrt(value[r]))
else:
a = numpy.log10( value[r-1] / value[r]) / numpy.log10(2.0)
b = numpy.log10(numpy.sqrt(value[r-1])/ numpy.sqrt(value[r])) / numpy.log10(2.0)
print (ne1,"\t%1.3e"%value[r]," %1.2f"%a, " | %1.3e"%numpy.sqrt(value[r])," %1.2f" %b)
print("____________________________________________________________________\n")
def newton_root (guess, eL, eR, polyX, polyT, f):
tol = 1.e-15
itMAX = 20
r = 1.0 #0.5 * (eR - eL)
#eM = 0.5 * (eR + eL)
zp = guess
zn = zp
t = numpy.zeros([1,1])
for it in range(itMAX):
x = polyX.evaluate(-1.0, 1.0, zn)
aux = polyT.evaluate(-1.0, 1.0, zn)
t[0,0] = aux[0]
ft = float(f.tangent(t))
val = x[3] - ft * r * aux[3]
if (abs (val) < tol):
zp = zn
break
dft = float(f.hessian(t))
dval = x[6] - (dft * r * r * aux[3] * aux[3] + ft * aux[6])
zp = zn
if (abs (dval) < tol):
print(" NULL DERIVATIVE ", dval)
break
zn = zp - val / dval
if (abs(zn - zp) < tol):
break
if (it == itMAX): print ("NEWTON didn't converge")
return zp
class TestDistanceFunctionOptimization(unittest.TestCase):
@staticmethod
def getGeometry1D(c, a, b):
if c == 0 or c == 10: return Curve1DPol.Curve1DCos (a, b)
elif c == 1: return Curve1DPol.Curve1DPol1(a, b)
elif c == 2: return Curve1DPol.Curve1DPol2(a, b)
elif c == 4: return Curve1DPol.Curve1DPol4(a, b)
elif c == 5: return Curve1DPol.Curve1DPol5(a, b)
elif c == 6: return Curve1DPol.Curve1Dexp (a, b)
elif c == 7: return Curve1DPol.Curve1DSine(a, b)
elif c == 8: return Curve1DPol.Curve1DCosh(a, b)
elif c == 9: return Curve1DPol.Curve1DSinh(a, b)
@staticmethod
def getMeshDistances(mesh, parametrization, functionName, tol, gp, fixU = False):
disparityDistanceComputer=Geometry.FrechetDistance.FrechetDistance(
mesh,parametrization,
functionName)
if fixU:
oldParametricMask = mesh.theParametricNodesMask.copy()
mesh.theParametricNodesMask[:] = True
disparityDistanceComputer.theFTolRel=tol
disparityDistanceComputer.theXTolRel=tol
disparityValue,normalError=disparityDistanceComputer.run()
projectorDistance = Geometry.ProjectionDistance.ProjectionDistance(
mesh,parametrization,gp)
projectorValue = projectorDistance.run()
if fixU:
mesh.theParametricNodesMask = oldParametricMask
return disparityValue, projectorValue, normalError
@staticmethod
def testDistanceFunction(pX, pU, ne, nR, curve, I, showPlots):
relocateX = False
fixU = False
callFix = True
method = 'Newton'
tolDistanceCalculation = 1.e-7
tol = 1.e-7
disparity_e = numpy.zeros([2,nR + 1])
disparity_XO = numpy.zeros([2,nR + 1])
disparity_XM = numpy.zeros([2,nR + 1])
gp = 50
objectiveFunctionName = "Intrinsic"
frechetFunctionName = "Intrinsic"
parametrization = TestDistanceFunctionOptimization.getGeometry1D(curve, I[0], I[1])
figcount = 1
ea = numpy.zeros(2)
pltInfo = ' pX = '+str(pX)+' pT = '+str(pU)
gpx, uw = quadratures.qType(pX + 1, quadratures.eLGL)
gpu, pw = quadratures.qType(pU + 1, quadratures.eLGL)
for ref in range(nR + 1):
h = (parametrization.theT1 - parametrization.theT0) / (pow (2, ref) * ne)
optimizer = Optimization.DistanceFunction.DistanceFunctionOptimization.DistanceFunctionOptimization(
parametrization,
h,pX,pU,
objectiveFunctionName,
tol,
initialP = pX,
method = method,
relocateX = relocateX,
fixU = fixU
)
meshO, meshI = optimizer.run()
newMasterElementX = meshO.theMasterElementMakerX.createMasterElement(pX, gp-1)
newMasterElementU = meshO.theMasterElementMakerU.createMasterElement(pU, gp-1)
oldMasterElementX = meshI.theMasterElementX
meshO.theMasterElementX = newMasterElementX
meshO.theMasterElementU = newMasterElementU
meshI.theMasterElementX = newMasterElementX
meshI.theMasterElementU = newMasterElementU
w = meshI.theMasterElementX.theGaussWeights
z = meshI.theMasterElementX.theGaussPoints
n = meshI.theNOfElements
zx = numpy.empty((n * gp ))
zp = numpy.empty((n * (pX + 1)))
zu = numpy.empty((n * (pU + 1)))
eBD = numpy.zeros(n + 1)
for i in range(n+1):
eBD[i] = parametrization.theT0 + h * i
x = numpy.empty((2,n * gp))
t = numpy.empty((2,n * gp))
alpha = numpy.empty((2,n * gp))
xMod = numpy.empty((2,n * gp))
errM = numpy.empty((2,n * gp))
errT = numpy.empty((2,n * gp))
poleC = numpy.empty((2,n * gp))
poleT = numpy.empty((2,n * gp))
polyP = numpy.empty((2,n * gp))
aPF = numpy.empty(( n * gp))
dumb = numpy.zeros([1,1])
for type in range(2):
if type == 0: mesh = meshO
else: mesh = meshI
disf,proje,norm = TestDistanceFunctionOptimization.getMeshDistances(
mesh,parametrization,frechetFunctionName,
tolDistanceCalculation, gp-1)
disparity_e[type, ref] = disf * disf * 0.5
#create interpolating t
for i in range(n):
if type == 0:
for j in range(gp):
zx[i * gp + j] = 0.5 * ( (eBD[i + 1] - eBD[i]) * z[j] + eBD[i + 1] + eBD[i] )
dumb[0] = zx[i * gp + j]
aux = parametrization.value(dumb)
aPF[i * gp + j] = aux
if j < pX + 1:
zp[i * (pX + 1) + j] = 0.5 * ( (eBD[i + 1] - eBD[i]) * gpx[j] + eBD[i + 1] + eBD[i] )
if j < pU + 1:
zu[i * (pU + 1) + j] = 0.5 * ( (eBD[i + 1] - eBD[i]) * gpu[j] + eBD[i + 1] + eBD[i] )
x_i = mesh.getXElement(i)
dx_i = mesh.getDNXElement(i)
t_i = mesh.getUElement(i)
alpha_i = parametrization.value(t_i)
# Approximate error function by peaks
if (type == 1): pE = max(pX, pU) + 1
else: pE = pX + pU
e_leg = polynomial.polynomial(1, pE, 0)
leg_err = e_leg.l2_legPro(x_i - alpha_i, z, w)
l2E = polynomial.polynomial(1, pX, 0)
l2A = polynomial.polynomial(1, pX, 0)
xM_i = l2A.l2_legPro(x_i, z, w)
xA_i = l2A.l2_legPro(alpha_i, z, w)
print(x_i - xM_i)
print(' nodes of l2 ')
print(l2A.node)
print(' modes ',l2A.n)
epolP = l2E.l2_legPro(x_i - xA_i, z, w)
plt.plot(z, epolP)
plt.show()
resA = alpha_i - xA_i
resP = l2E.l2_legPro(resA, z, w)
plt.plot(z, resP - epolP)
plt.show()
plt.plot(z, epolP - resA)
plt.show()
dxm_i = numpy.zeros(gp)
for j in range(gp):
aux = l2A.evaluate(z[j])
dxm_i[j]= aux[1,0]
sumXO = 0.0
sumXM = 0.0
#x_i = xA_i
#dx_i = dxm_i
dxa = x_i - alpha_i
dx2 = xA_i - alpha_i
#dx2 = xM_i - x_i# - xM_i
for j in range (gp):
polyP[type,i * gp + j] = x_i[j] - xA_i[j]
x [type,i * gp + j] = x_i[j]
xMod [type,i * gp + j] = xA_i[j]
t [type,i * gp + j] = t_i[j]
alpha[type,i * gp + j] = alpha_i[j]
poleT[type,i * gp + j] = leg_err[j,0]
errT [type,i * gp + j] = dxa[j]
errM [type,i * gp + j] = dx2[j]
ea[type] = max (ea[type],dxa[j])
sumXO += dxa[j] * dxa[j] * w[j] * abs(dx_i[j])
sumXM += dx2[j] * dx2[j] * w[j] * abs(dx_i[j])
disparity_XO [type,ref] += 0.5 * sumXO
disparity_XM [type,ref] += 0.5 * sumXM
if ref != 0: continue
zAXIS = numpy.zeros(n + 1)
yAXIS = numpy.zeros(n + 1)
ypAXIS = numpy.zeros(n * (pX + 1))
yuAXIS = numpy.zeros(n * (pU + 1))
tAXIS = numpy.zeros([2,n + 1])
xEP = numpy.zeros([2,n + 1])
aEP = numpy.zeros([2,n + 1])
for i in range(n):
zAXIS [i] = zx [i * gp]
tAXIS[0][i] = t [0][i * gp]
tAXIS[1][i] = t [1][i * gp]
xEP [0][i] = x [0][i * gp]
xEP [1][i] = x [1][i * gp]
aEP [0][i] = alpha[0][i * gp]
aEP [1][i] = alpha[1][i * gp]
zAXIS[n] = zx [-1]
tAXIS[0][n] = t [0][-1]
tAXIS[1][n] = t [1][-1]
xEP[0][n] = x [0][-1]
xEP[1][n] = x [1][-1]
aEP[0][n] = alpha[0][-1]
aEP[1][n] = alpha[1][-1]
fig = plt.figure(figcount)
figcount += 1
plt.suptitle(' Curves ' + pltInfo)
for type in range(2):
plt.subplot(2,3,3 * type + 1)
if type == 0: plt.title(' Opti Solution')
else: plt.title(' Interpol Solution')
plt.plot(zx, x[type], c = 'b', linestyle='-.')
plt.plot(zx,xMod[type], c = 'c', linestyle='--')
plt.xlabel('z')
plt.subplot(2,3,3 * type + 2)
plt.title('Target Solution')
plt.plot(zx, alpha[type], c = 'r', linestyle=':', label = 'alpha o t')
plt.plot(zx, aPF , c = 'orange', linestyle='-', label = 'alpha')
plt.xlabel('z')
plt.legend()
plt.subplot(2,3,3 * type + 3)
plt.title(' Overlap')
plt.plot(zx, aPF , c = 'orange', linestyle='-', label = 'alpha')
plt.plot(zx, x[type] , c = 'b', linestyle='-.', label = 'x')
plt.plot(zx, xMod[type] , c = 'c', linestyle='--', label = 'x_modal')
plt.plot(zx, alpha[type], c = 'r', linestyle=':', label = 'alpha o t')
plt.xlabel('z')
plt.legend()
errTN = numpy.zeros([2, n * gp])
poleTN = numpy.zeros([2, n * gp])
errMN = numpy.zeros([2, n * gp])
errTN[0] = errT[0] / ea[0]
errTN[1] = errT[1] / ea[1]
poleTN[0] = poleT[0] / ea[0]
poleTN[1] = poleT[1] / ea[1]
errMN[0] = errM[0] / ea[0]
errMN[1] = errM[1] / ea[1]
fig = plt.figure(figcount)
figcount += 1
plt.suptitle('Error from ' + pltInfo)
for type in range(2):
plt.subplot(2,3, 3 * type +1)
if type == 0: plt.title('Optimized x')
else: plt.title('Interpol x')
plt.plot(zx, x[type] - aPF, c = 'b', linestyle='-.', label='x - alpha')
plt.plot(zAXIS,yAXIS , c = 'g', linewidth = 0.25, linestyle = ':')
plt.xlabel('z')
plt.legend()
plt.subplot(2,3, 3 * type +2)
if type == 0: plt.title('Optimized x and t ')
else: plt.title('Interpol x and t')
plt.plot(zx,errT[type], c = 'b', linestyle ='-', label='x - alpha o t')
plt.plot(zx,poleT[type],c = 'r', linestyle =':', label='error poly')
plt.plot(zx,errM[type], c = 'c', linestyle ='--', label='x_mod - alpha o t')
plt.plot(zAXIS,yAXIS, c = 'g', linewidth = 0.25, linestyle = ':')
plt.scatter(zAXIS, xEP[type] - aEP[type] , c = 'g', s = 15)
plt.xlabel('z')
plt.legend()
plt.subplot(2,3, 3 * type +3)
plt.title('Normalized Curves ')
plt.plot(zx, errTN[type], c = 'b' , linestyle='-.', label='x - alpha o t')
plt.plot(zx, errMN[type], c = 'c' , linestyle='--', label='x_mod - alpha o t')
plt.plot(zx, poleTN[type], c = 'r' , linestyle=':', label='error poly')
plt.plot(zAXIS,yAXIS, c = 'g', linewidth = 0.25, linestyle = ':')
plt.scatter(zAXIS,yAXIS, c = 'g', s = 15)
fig = plt.figure(figcount)
figcount += 1
plt.suptitle('Error from ' + pltInfo)
for type in range(2):
plt.subplot(2,2, 2 * type +1)
if type == 0: plt.title('Optimized x')
else: plt.title('Interpol x')
plt.plot(zx, polyP[type], c = 'b', linestyle='-.', label='x - alpha_p')
plt.plot(zx, -errM[type], c = 'r', linestyle='-', label='res_(p+1)')
plt.plot( zAXIS,yAXIS, c = 'g', linewidth = 0.25, linestyle = ':')
plt.scatter(zAXIS,yAXIS, c = 'g', s = 15)
plt.xlabel('z')
plt.legend()
plt.subplot(2,2, 2 * type +2)
if type == 0: plt.title('Optimized x and t ')
else: plt.title('Interpol x and t')
plt.plot(zx,errT[type], c = 'b', linestyle ='-', label='x - alpha o t')
plt.plot(zx,poleT[type],c = 'r', linestyle =':', label='error poly')
plt.plot(zx,polyP[type] + errM[type], c = 'c', linestyle ='--', label='comp error')
plt.plot(zAXIS,yAXIS, c = 'g', linewidth = 0.25, linestyle = ':')
plt.scatter(zAXIS, xEP[type] - aEP[type] , c = 'g', s = 15)
plt.xlabel('z')
plt.legend()
for type in range(2):
if (type == 0): print(' ******** OPTIMIZED MESH ***********')
else: print(' ******** INTERPOLATING MESH ***********')
convergence_IO(nR, ne, disparity_e[type] , pX, pU, 'ELOI DISPARITY: || x_p (xi) - alpha o t||_sigma')
convergence_IO(nR, ne, disparity_XO[type] , pX, pU, 'MY DISPARITY: || x_p (xi) - alpha o t||_sigma')
convergence_IO(nR, ne, disparity_XM[type] , pX, pU, 'MY DISPARITY: || x_mod (xi) - alpha (xi)||_sigma')
if (showPlots == True): plt.show()
if __name__ == '__main__':
argc = len(sys.argv)
if argc != 7:
print (" I NEED DEGREEX + degree T + INITIAL ELEMENTS + REFINEMENTS + CURVE TYPE + SHOW MESH")
print(sys.argv)
quit(1)
degX = int(sys.argv[1]) # number of elements
degT = int(sys.argv[2]) # number of elements
elmts = int(sys.argv[3]) # number of elements
refine = int(sys.argv[4]) # number of elements
curve = int(sys.argv[5]) # number of elements
showPlots = int(sys.argv[6]) # number of elements
if (curve == 0):
I = [0, numpy.pi]
print(" SOLVING COS(x) x in [0, pi]")
elif (curve == 10):
I = [0, 2.0 * numpy.pi]
print(" SOLVING COS(x) x in [0, 2pi]")
elif (curve == 5):
I = [1, 2]
print(" SOLVING a poly deg 5 ")
elif curve == 8: I = [0, 1]
else: I = [0,1]
TestDistanceFunctionOptimization.testDistanceFunction(degX, degT, elmts, refine, curve, I, showPlots)