forked from GAOYANGAU/DRLPytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnature-DQN.py
109 lines (92 loc) · 3.35 KB
/
nature-DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import torch
import torch.nn as nn
from collections import deque
import numpy as np
import gym
import random
from net import AtariNet
from util import preprocess
BATCH_SIZE = 32
LR = 0.001
START_EPSILON = 1.0
FINAL_EPSILON = 0.1
EPSILON = START_EPSILON
EXPLORE = 1000000
GAMMA = 0.99
TOTAL_EPISODES = 10000000
MEMORY_SIZE = 1000000
MEMORY_THRESHOLD = 100000
UPDATE_TIME = 10000
TEST_FREQUENCY = 1000
env = gym.make('Pong-v0')
env = env.unwrapped
ACTIONS_SIZE = env.action_space.n
class Agent(object):
def __init__(self):
self.network, self.target_network = AtariNet(ACTIONS_SIZE), AtariNet(ACTIONS_SIZE)
self.memory = deque()
self.learning_count = 0
self.optimizer = torch.optim.Adam(self.network.parameters(), lr=LR)
self.loss_func = nn.MSELoss()
def action(self, state, israndom):
if israndom and random.random() < EPSILON:
return np.random.randint(0, ACTIONS_SIZE)
state = torch.unsqueeze(torch.FloatTensor(state), 0)
actions_value = self.network.forward(state)
return torch.max(actions_value, 1)[1].data.numpy()[0]
def learn(self, state, action, reward, next_state, done):
if done:
self.memory.append((state, action, reward, next_state, 0))
else:
self.memory.append((state, action, reward, next_state, 1))
if len(self.memory) > MEMORY_SIZE:
self.memory.popleft()
if len(self.memory) < MEMORY_THRESHOLD:
return
if self.learning_count % UPDATE_TIME == 0:
self.target_network.load_state_dict(self.network.state_dict())
self.learning_count += 1
batch = random.sample(self.memory, BATCH_SIZE)
state = torch.FloatTensor([x[0] for x in batch])
action = torch.LongTensor([[x[1]] for x in batch])
reward = torch.FloatTensor([[x[2]] for x in batch])
next_state = torch.FloatTensor([x[3] for x in batch])
done = torch.FloatTensor([[x[4]] for x in batch])
eval_q = self.network.forward(state).gather(1, action)
next_q = self.target_network(next_state).detach()
target_q = reward + GAMMA * next_q.max(1)[0].view(BATCH_SIZE, 1) * done
loss = self.loss_func(eval_q, target_q)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
agent = Agent()
for i_episode in range(TOTAL_EPISODES):
state = env.reset()
state = preprocess(state)
while True:
# env.render()
action = agent.action(state, True)
next_state, reward, done, info = env.step(action)
next_state = preprocess(next_state)
agent.learn(state, action, reward, next_state, done)
state = next_state
if done:
break
if EPSILON > FINAL_EPSILON:
EPSILON -= (START_EPSILON - FINAL_EPSILON) / EXPLORE
# TEST
if i_episode % TEST_FREQUENCY == 0:
state = env.reset()
state = preprocess(state)
total_reward = 0
while True:
# env.render()
action = agent.action(state, israndom=False)
next_state, reward, done, info = env.step(action)
next_state = preprocess(next_state)
total_reward += reward
state = next_state
if done:
break
print('episode: {} , total_reward: {}'.format(i_episode, round(total_reward, 3)))
env.close()