-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypto_aes.hpp
485 lines (395 loc) · 19.8 KB
/
crypto_aes.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#ifndef ALGO_AES_HPP
#define ALGO_AES_HPP
#include <cstdint>
#include <algorithm>
#include "../utils_memory.hpp"
/**
* TODO: https://github.com/SergeyBel/AES
*/
namespace utils::crypto {
class AES {
private:
int Nb; ///< Number of blocks
int Nk; ///< Number of keys uint32_ts in key (Nk * 32 is keysize)
int Nr; ///< Number of rounds
uint32_t blockBytesLen;
void SubBytes(uint8_t **state) const {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < this->Nb; j++) {
const uint8_t t = state[i][j];
state[i][j] = this->sbox[t];
}
}
}
// shift row i on n positions
void ShiftRow(uint8_t **state, const int i, const int n) const {
for (int k = 0; k < n; k++) {
const uint8_t t = state[i][0];
for (int j = 0; j < this->Nb - 1; j++) {
state[i][j] = state[i][j + 1];
}
state[i][this->Nb - 1] = t;
}
}
inline void ShiftRows(uint8_t **state) const {
this->ShiftRow(state, 1, 1);
this->ShiftRow(state, 2, 2);
this->ShiftRow(state, 3, 3);
}
// multiply on x
inline uint8_t xtime(uint8_t b) const {
constexpr uint8_t mask = 0x80, m = 0x1b;
const uint8_t high_bit = b & mask;
b <<= 1;
// b ^ m => mod m(x)
return high_bit ? b ^ m : b;
}
uint8_t mul_bytes(uint8_t a, uint8_t b) const {
constexpr uint8_t mask = 1;
uint8_t c = 0;
for (int i = 0; i < 8; i++) {
const uint8_t bit = b & mask;
if (bit) {
uint8_t d = a;
for (int j = 0; j < i; j++) {
// multiply on x^i
d = xtime(d);
}
c ^= d; // xor to result
}
b >>= 1;
}
return c;
}
void MixColumns(uint8_t **state) const {
uint8_t s[4], s1[4];
for (int j = 0; j < this->Nb; j++) {
for (int i = 0; i < 4; i++) {
s[i] = state[i][j];
}
s1[0] = mul_bytes(0x02, s[0]) ^ mul_bytes(0x03, s[1]) ^ s[2] ^ s[3];
s1[1] = s[0] ^ mul_bytes(0x02, s[1]) ^ mul_bytes(0x03, s[2]) ^ s[3];
s1[2] = s[0] ^ s[1] ^ mul_bytes(0x02, s[2]) ^ mul_bytes(0x03, s[3]);
s1[3] = mul_bytes(0x03, s[0]) ^ s[1] ^ s[2] ^ mul_bytes(0x02, s[3]);
for (int i = 0; i < 4; i++) {
state[i][j] = s1[i];
}
}
}
void AddRoundKey(uint8_t **state, const uint8_t *key) const {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < Nb; j++) {
state[i][j] = state[i][j] ^ key[i + 4 * j];
}
}
}
inline void SubWord(uint8_t *a) const {
for (int i = 0; i < 4; i++) {
a[i] = this->sbox[a[i]];
}
}
inline void RotWord(uint8_t *a) const {
uint8_t c = a[0];
a[0] = a[1];
a[1] = a[2];
a[2] = a[3];
a[3] = c;
}
inline void XorWords(const uint8_t *a, const uint8_t *b, uint8_t *c) const {
for (int i = 0; i < 4; i++) {
c[i] = a[i] ^ b[i];
}
}
void Rcon(uint8_t *a, const int n) const {
uint8_t c = 1;
for (int i = 0; i < n - 1; i++) {
c = xtime(c);
}
a[0] = c;
a[1] = a[2] = a[3] = 0;
}
void InvSubBytes(uint8_t **state) const {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < this->Nb; j++) {
const uint8_t t = state[i][j];
state[i][j] = this->inv_sbox[t];
}
}
}
void InvMixColumns(uint8_t **state) const {
uint8_t s[4], s1[4];
for (int j = 0; j < Nb; j++) {
for (int i = 0; i < 4; i++) {
s[i] = state[i][j];
}
s1[0] = mul_bytes(0x0e, s[0]) ^ mul_bytes(0x0b, s[1]) ^ mul_bytes(0x0d, s[2]) ^ mul_bytes(0x09, s[3]);
s1[1] = mul_bytes(0x09, s[0]) ^ mul_bytes(0x0e, s[1]) ^ mul_bytes(0x0b, s[2]) ^ mul_bytes(0x0d, s[3]);
s1[2] = mul_bytes(0x0d, s[0]) ^ mul_bytes(0x09, s[1]) ^ mul_bytes(0x0e, s[2]) ^ mul_bytes(0x0b, s[3]);
s1[3] = mul_bytes(0x0b, s[0]) ^ mul_bytes(0x0d, s[1]) ^ mul_bytes(0x09, s[2]) ^ mul_bytes(0x0e, s[3]);
for (int i = 0; i < 4; i++) {
state[i][j] = s1[i];
}
}
}
inline void InvShiftRows(uint8_t **state) const {
this->ShiftRow(state, 1, this->Nb - 1);
this->ShiftRow(state, 2, this->Nb - 2);
this->ShiftRow(state, 3, this->Nb - 3);
}
utils::memory::unique_arr_t<uint8_t> PaddingNulls(const uint8_t in[], const uint32_t inLen, const uint32_t alignLen) const {
auto aligned = utils::memory::new_unique_array<uint8_t>(alignLen);
std::copy_n(in, inLen, aligned.get()); // inlen to alignLen already 0
return aligned;
}
inline uint32_t GetPaddingLength(const uint32_t len) const {
uint32_t lengthWithPadding = (len / this->blockBytesLen);
if (len % blockBytesLen) {
lengthWithPadding++;
}
return lengthWithPadding * this->blockBytesLen;
}
void KeyExpansion(const uint8_t key[], uint8_t w[]) const {
auto temp = utils::memory::new_unique_array<uint8_t>(4);
auto rcon = utils::memory::new_unique_array<uint8_t>(4);
int i = 0;
while (i < 4 * this->Nk) {
w[i] = key[i];
i++;
}
i = 4 * this->Nk;
while (i < 4 * this->Nb * (this->Nr + 1)) {
temp[0] = w[i - 4 + 0];
temp[1] = w[i - 4 + 1];
temp[2] = w[i - 4 + 2];
temp[3] = w[i - 4 + 3];
if (((i / 4) % this->Nk) == 0) {
this->RotWord(temp.get());
this->SubWord(temp.get());
this->Rcon(rcon.get(), i / (this->Nk * 4));
this->XorWords(temp.get(), rcon.get(), temp.get());
} else if (Nk > 6 && ((i / 4) % this->Nk) == 4) {
this->SubWord(temp.get());
}
w[i + 0] = w[i - 4 * this->Nk] ^ temp[0];
w[i + 1] = w[i + 1 - 4 * this->Nk] ^ temp[1];
w[i + 2] = w[i + 2 - 4 * this->Nk] ^ temp[2];
w[i + 3] = w[i + 3 - 4 * this->Nk] ^ temp[3];
i += 4;
}
}
void EncryptBlock(const uint8_t in[], uint8_t out[], const uint8_t key[]) const {
auto w = utils::memory::new_unique_array<uint8_t>(size_t(4 * this->Nb * (this->Nr + 1)));
this->KeyExpansion(key, w.get());
auto state = utils::memory::new_array<uint8_t>(4, size_t(this->Nb));
for (int i = 0; i < 4; i++) {
for (int j = 0; j < this->Nb; j++) {
state[i][j] = in[i + 4 * j];
}
}
this->AddRoundKey(state, w.get());
for (int round = 1; round <= this->Nr - 1; round++) {
this->SubBytes(state);
this->ShiftRows(state);
this->MixColumns(state);
this->AddRoundKey(state, w.get() + round * 4 * this->Nb);
}
this->SubBytes(state);
this->ShiftRows(state);
this->AddRoundKey(state, w.get() + this->Nr * 4 * this->Nb);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < this->Nb; j++) {
out[i + 4 * j] = state[i][j];
}
}
utils::memory::delete_array(state, 4);
}
void DecryptBlock(const uint8_t in[], uint8_t out[], const uint8_t key[]) const {
auto w = utils::memory::new_unique_array<uint8_t>(size_t(4 * this->Nb * (this->Nr + 1)));
this->KeyExpansion(key, w.get());
auto state = utils::memory::new_array<uint8_t>(4, size_t(this->Nb));
for (int i = 0; i < 4; i++) {
for (int j = 0; j < this->Nb; j++) {
state[i][j] = in[i + 4 * j];
}
}
this->AddRoundKey(state, w.get() + this->Nr * 4 * this->Nb);
for (int round = Nr - 1; round >= 1; round--) {
this->InvSubBytes(state);
this->InvShiftRows(state);
this->AddRoundKey(state, w.get() + round * 4 * this->Nb);
this->InvMixColumns(state);
}
this->InvSubBytes(state);
this->InvShiftRows(state);
this->AddRoundKey(state, w.get());
for (int i = 0; i < 4; i++) {
for (int j = 0; j < this->Nb; j++) {
out[i + 4 * j] = state[i][j];
}
}
utils::memory::delete_array(state, 4);
}
inline void XorBlocks(const uint8_t *a, const uint8_t *b, uint8_t *c, const uint32_t len) const {
std::transform(a, a + len, b, c,
[](const uint8_t va, const uint8_t vb) {
return va ^ vb;
});
}
static inline constexpr uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static inline constexpr uint8_t inv_sbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d,
};
public:
AES(int keyLen = 256) {
this->Nb = 4;
switch (keyLen) {
case 128:
this->Nk = 4;
this->Nr = 10;
break;
case 192:
this->Nk = 6;
this->Nr = 12;
break;
case 256:
this->Nk = 8;
this->Nr = 14;
break;
default:
throw "Incorrect key length";
}
this->blockBytesLen = uint32_t(4 * this->Nb * int32_t(sizeof(uint8_t)));
}
auto EncryptECB(const uint8_t in[], const uint32_t inLen, const uint8_t key[], uint32_t& outLen) const {
outLen = this->GetPaddingLength(inLen);
auto alignIn = PaddingNulls(in, inLen, outLen);
auto out = utils::memory::new_unique_array<uint8_t>(outLen);
for (uint32_t i = 0; i < outLen; i += this->blockBytesLen) {
this->EncryptBlock(alignIn.get() + i, out.get() + i, key);
}
return out;
}
auto DecryptECB(const uint8_t in[], const uint32_t inLen, const uint8_t key[]) const {
auto out = utils::memory::new_unique_array<uint8_t>(inLen);
for (uint32_t i = 0; i < inLen; i += this->blockBytesLen) {
DecryptBlock(in + i, out.get() + i, key);
}
return out;
}
auto EncryptCBC(const uint8_t in[], const uint32_t inLen, const uint8_t key[], const uint8_t *iv, uint32_t& outLen) const {
outLen = this->GetPaddingLength(inLen);
auto alignIn = PaddingNulls(in, inLen, outLen);
auto out = utils::memory::new_unique_array<uint8_t>(outLen);
auto block = utils::memory::new_unique_array<uint8_t>(this->blockBytesLen);
std::copy_n(iv, this->blockBytesLen, block.get());
for (uint32_t i = 0; i < outLen; i += this->blockBytesLen) {
this->XorBlocks(block.get(), alignIn.get() + i, block.get(), this->blockBytesLen);
this->EncryptBlock(block.get(), out.get() + i, key);
std::copy_n(out.get() + i, this->blockBytesLen, block.get());
}
return out;
}
auto DecryptCBC(const uint8_t in[], const uint32_t inLen, const uint8_t key[], const uint8_t *iv) const {
auto out = utils::memory::new_unique_array<uint8_t>(inLen);
auto block = utils::memory::new_unique_array<uint8_t>(this->blockBytesLen);
std::copy_n(iv, this->blockBytesLen, block.get());
for (uint32_t i = 0; i < inLen; i += this->blockBytesLen) {
this->DecryptBlock(in + i, out.get() + i, key);
this->XorBlocks(block.get(), out.get() + i, out.get() + i, this->blockBytesLen);
std::copy_n(out.get() + i, this->blockBytesLen, block.get());
}
return out;
}
auto EncryptCFB(const uint8_t in[], const uint32_t inLen, const uint8_t key[], const uint8_t *iv, uint32_t& outLen) const {
outLen = this->GetPaddingLength(inLen);
auto alignIn = this->PaddingNulls(in, inLen, outLen);
auto out = utils::memory::new_unique_array<uint8_t>(outLen);
auto block = utils::memory::new_unique_array<uint8_t>(this->blockBytesLen);
auto encryptedBlock = utils::memory::new_unique_array<uint8_t>(this->blockBytesLen);
std::copy_n(iv, this->blockBytesLen, block.get());
for (uint32_t i = 0; i < outLen; i += this->blockBytesLen) {
this->EncryptBlock(block.get(), encryptedBlock.get(), key);
this->XorBlocks(alignIn.get() + i, encryptedBlock.get(), out.get() + i, this->blockBytesLen);
std::copy_n(out.get() + i, this->blockBytesLen, block.get());
}
return out;
}
auto DecryptCFB(const uint8_t in[], const uint32_t inLen, const uint8_t key[], const uint8_t *iv) const {
auto out = utils::memory::new_unique_array<uint8_t>(inLen);
auto block = utils::memory::new_unique_array<uint8_t>(this->blockBytesLen);
auto encryptedBlock = utils::memory::new_unique_array<uint8_t>(this->blockBytesLen);
std::copy_n(iv, this->blockBytesLen, block.get());
for (uint32_t i = 0; i < inLen; i += this->blockBytesLen) {
this->EncryptBlock(block.get(), encryptedBlock.get(), key);
this->XorBlocks(in + i, encryptedBlock.get(), out.get() + i, this->blockBytesLen);
std::copy_n(in + i, this->blockBytesLen, block.get());
}
return out;
}
};
}
#endif // ALGO_AES_HPP