forked from jaakkopasanen/AutoEq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_graph_parser.py
314 lines (275 loc) · 11.7 KB
/
image_graph_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# -*- coding: utf-8 -*-
import os
import argparse
import numpy as np
from glob import glob
from PIL import Image, ImageDraw
import colorsys
from frequency_response import FrequencyResponse
from operator import itemgetter
from itertools import groupby
import warnings
class ImageGraphParser:
def __init__(self):
self.images = dict()
self.frequency_responses = dict()
def read_images(self, dir_path):
"""Reads images from file.
Args:
dir_path: Path to a directory full of images. Mutually exclusive to `file_path`
Returns:
- **data:** Graph data for parsed images
"""
file_paths = [os.path.abspath(file_path) for file_path in glob(os.path.join(dir_path, '*.png'))]
for file_path in file_paths:
try:
with open(file_path, 'rb') as f:
model = os.path.split(file_path)[-1].split('.')[0]
self.images[model] = Image.open(file_path)
except:
warnings.warn('Failed to read image in path "{}"'.format(file_path))
def parse_images(self, source, models=None, inspection_dir=None):
"""Parses all read images."""
if models is not None:
images = {model: self.images[model] for model in models}
else:
images = self.images
if inspection_dir is not None:
inspection_dir = os.path.abspath(inspection_dir)
os.makedirs(inspection_dir, exist_ok=True)
for model, image in images.items():
try:
if source == 'headphonecom':
self.frequency_responses[model] = self.parse_headphonecom(image, model=model)
elif source == 'innerfidelity':
self.frequency_responses[model], inspection = self.parse_innerfidelity(image, model=model)
if inspection_dir is not None:
inspection.save(os.path.join(inspection_dir, model+'.png'))
except Exception as err:
warnings.warn('Image for "{model}" parsing failed: "{err}"'.format(model=model, err=err))
continue
print('Parsed image for "{}"'.format(model))
@staticmethod
def parse_headphonecom(im, model, scale=40):
"""Parses graph image downloaded from headphone.com"""
# Crop out everything but graph area
px_top = 24 # Pixels from top to +30dB
px_bottom = 125 # Pixels from bottom to -30dB
px_left = 51 # Pixels from left to 10Hz
px_right = 50 # Pixels from right edge
box = (px_left, px_top, im.size[0]-px_right, im.size[1]-px_bottom)
im = im.crop(box)
# X axis
f_min = 10
f_max = 20000
px_f_max = 71
f_step = (f_max / f_min)**(1/(im.size[0]-(px_f_max-px_right)))
f = [f_min]
for _ in range(1, im.size[0]):
f.append(f[-1] * f_step)
# Y axis
a_max = scale
a_min = -scale
a_res = (a_max - a_min) / im.size[1] # dB / px
amplitude = []
# Iterate each column
for x in range(im.size[0]):
pxs = [] # Graph pixels
# Iterate each row (pixel in column)
for y in range(im.size[1]):
# Convert read RGB pixel values and convert to HSV
h, l, s = colorsys.rgb_to_hls(*[v/255.0 for v in im.getpixel((x, y))])
# Scale hue to 0-255
h *= 255
# Graph pixels are blue
if s > 0.5 and 140 < h < 160:
pxs.append(float(y))
if not pxs:
# No graph pixels found on this column
amplitude.append(None)
else:
# Mean of recorded pixels
v = sum(pxs) / len(pxs)
# Convert to dB value
v = a_max - v * a_res
amplitude.append(v)
fr = FrequencyResponse(model, f, amplitude)
return fr
@staticmethod
def find_lines(im, orientation, line_color=None):
if orientation == 'vertical':
ori1 = 0
ori2 = 1
elif orientation == 'horizontal':
ori1 = 1
ori2 = 0
else:
raise ValueError('\'orientation\' must be "vertical" or "horizontal"!')
lines = []
for i in range(1, im.size[ori1]):
# Count number of black pixels
count = 0
for j in range(im.size[ori2]):
if orientation == 'vertical':
rgba = im.getpixel((i, j))
else:
rgba = im.getpixel((j, i))
r, g, b = rgba[:3]
if line_color is not None:
if (r, g, b) == line_color:
count += 1
else:
if r + g + b < 450 and r == g == b:
count += 1
if count > im.size[ori2] / 2:
# More than half of pixels are black -> this is a line
lines.append(i)
means = []
for k, g in groupby(enumerate(lines), lambda x:x[0]-x[1]):
group = map(itemgetter(1), g)
means.append(int(np.round(np.mean(list(group)))))
return means
@staticmethod
def parse_innerfidelity(im, model, px_top=800, px_bottom=4600, px_left=500, px_right=2500):
"""Parses graph image downloaded from innerfidelity.com"""
# Crop out everything but graph area (roughly)
box = (px_left, px_top, im.size[0]-px_right, im.size[1]-px_bottom)
im = im.crop(box)
# Find graph edges (thick lines)
v_lines = ImageGraphParser.find_lines(im, 'vertical')
h_lines = ImageGraphParser.find_lines(im, 'horizontal')
px_top = h_lines[0]
px_bottom = h_lines[-1]
px_left = v_lines[0]
px_right = v_lines[-1]
im = im.crop((px_left, px_top, px_right, px_bottom))
# Crop right edge to 30kHz
lines = ImageGraphParser.find_lines(im, 'vertical')
px_30khz = lines[-8]
im = im.crop((0, 0, px_30khz, im.size[1]))
# X axis
f_min = 10
f_max = 30000
f_step = (f_max / f_min)**(1/im.size[0])
f = [f_min]
for _ in range(1, im.size[0]):
f.append(f[-1] * f_step)
# Y axis
a_max = 20
a_min = -50
a_res = (a_max - a_min) / im.size[1] # dB / px
# Check crop
_im = im.crop((20, 20, im.size[0] - 20, im.size[1] - 20))
# im.show()
n_h = len(ImageGraphParser.find_lines(_im, 'horizontal'))
n_v = len(ImageGraphParser.find_lines(_im, 'vertical'))
if n_v != 28:
print(n_v)
raise ValueError('Innerfidelity image parsing for "{}" failed because X-axis is not correct!'.format(model))
if n_h != 13:
print(n_h)
raise ValueError('Innerfidelity image parsing for "{}" failed because Y-axis is not correct!'.format(model))
_im = im.copy()
pix = _im.load()
amplitude = []
# Iterate each column
for x in range(im.size[0]):
pxs = [] # Graph pixels
# Iterate each row (pixel in column)
for y in range(im.size[1]):
# Convert read RGB pixel values and convert to HSV
h, s, v = colorsys.rgb_to_hsv(*[v/255.0 for v in im.getpixel((x, y))])
# Graph pixels are colored
if s > 0.8:
pxs.append(float(y))
else:
p = im.getpixel((x, y))
pix[x, y] = (int(0.9*p[0]), int(255*0.1+0.9*p[1]), int(0+0.9*p[2]))
if not pxs:
# No graph pixels found on this column
amplitude.append(None)
else:
# Mean of recorded pixels
v = np.mean(pxs)
# Convert to dB value
v = a_max - v * a_res
amplitude.append(v)
draw = ImageDraw.Draw(_im)
x0 = np.log(20/f_min) / np.log(f_step)
x1 = np.log(20000/f_min) / np.log(f_step)
draw.rectangle(((x0, 10/a_res), (x1, 60/a_res)), outline='magenta')
fr = FrequencyResponse(model, f, amplitude)
return fr, _im
@staticmethod
def parse_cropped(im, name='fr', f_min=20, f_max=20000, a_min=-20, a_max=20):
"""Parses an image which has been cropped tightly to given boundaries. Image left boundary must be cropped
to f_min, right boundary to f_max, bottom boundary to a_min and top boundary to a_max. Only colored pixels will
be scanned.
Args:
im: Image
name: Name of the image / produced FrequencyResponse
f_min: Frequency at left boundary of the image
f_max: Frequency at right boundary of the image
a_min: Amplitude at bottom boundary of the image
a_max: Amplitude at top boundary of the image
Returns:
FrequencyResponse created from colored pixels in the image
"""
# X axis (frequencies)
f_step = (f_max / f_min) ** (1 / im.size[0])
f = [f_min]
for _ in range(1, im.size[0]):
f.append(f[-1] * f_step)
# Y axis (amplitude)
a_res = (a_max - a_min) / im.size[1] # dB / px
_im = im.copy()
pix = _im.load()
amplitude = []
for x in range(im.size[0]):
pxs = [] # Graph pixels
# Iterate each row (pixel in column)
for y in range(im.size[1]):
# Convert read RGB pixel values and convert to HSV
h, s, v = colorsys.rgb_to_hsv(*[v/255.0 for v in im.getpixel((x, y))])
# Graph pixels are colored
if s > 0.8:
pxs.append(float(y))
else:
p = im.getpixel((x, y))
pix[x, y] = (int(0.9*p[0]), int(255*0.1+0.9*p[1]), int(0+0.9*p[2]))
if not pxs:
# No graph pixels found on this column
amplitude.append(None)
else:
# Mean of recorded pixels
v = np.mean(pxs)
# Convert to dB value
v = a_max - v * a_res
amplitude.append(v)
return FrequencyResponse(name=name, frequency=f, raw=amplitude)
@staticmethod
def main():
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--input_dir', type=str, required=True, help='Path to directory containing images.')
arg_parser.add_argument('--output_dir', type=str, required=True, help='Path to output directory.')
arg_parser.add_argument('--inspection_dir', type=str, required=True, help='Path to inspection directory.')
arg_parser.add_argument('--source', type=str, default='headphonecom', help='Where did the image come from?')
cli_args = arg_parser.parse_args()
input_dir = os.path.abspath(cli_args.input_dir)
output_dir = os.path.abspath(cli_args.output_dir)
inspection_dir = os.path.abspath(cli_args.inspection_dir)
if os.path.isdir(output_dir):
os.makedirs(output_dir, exist_ok=True)
if os.path.isdir(inspection_dir):
os.makedirs(inspection_dir, exist_ok=True)
parser = ImageGraphParser()
parser.read_images(input_dir)
parser.parse_images(cli_args.source, inspection_dir=inspection_dir)
for fr in parser.frequency_responses.values():
dir_path = os.path.join(os.path.abspath(output_dir), fr.name)
if not os.path.exists(dir_path):
os.makedirs(dir_path, exist_ok=True)
fr.write_to_csv(os.path.join(dir_path, fr.name+'.csv'))
# fr.plot_graph(show=True)
if __name__ == '__main__':
ImageGraphParser.main()