-
Notifications
You must be signed in to change notification settings - Fork 284
/
Copy pathpruneClassificationCART.py
166 lines (148 loc) · 6.75 KB
/
pruneClassificationCART.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
from pprint import pprint
from collections import Counter
from rich.console import Console
from rich.table import Table
import sys
import os
from pathlib import Path
sys.path.append(str(Path(os.path.abspath(__file__)).parent.parent))
from utils import *
from ClassificationCART import ClassificationCART
class PrunedCART:
def __init__(self, cart, X, Y, val_X, val_Y, verbose=True):
self.root = cart.root
self.possible_prune_threshold = {np.inf}
self.verbose = verbose
# Stage one: calculate pruning loss for all nodes
self.calculate_prune_loss(self.root, X, Y)
if self.verbose:
print("All the possible threshold values are", self.possible_prune_threshold)
# Stage two: choose the best threshold for pruning
self.prune_threshold = self.choose_threshold(val_X, val_Y, self.possible_prune_threshold)
if self.verbose:
print("The best threshold value is", self.prune_threshold)
def calculate_prune_loss(self, root, X, Y):
"""
get the pruning loss of a classification CART recursively
tag all the nodes with a float `pruned_loss`, which indicating the loss of pruning the branches under this node
this node will be trimmed
possible_prune_threshold is a empty set, in which this function will insert all the possible threshold value.
return the loss of all the leaf nodes, and the size of the subtree
"""
# calculate the gini index of this subtree if the children of root is trimmed
pruned_gini = len(X) * gini(Counter(Y).values())
pruned_loss = pruned_gini
# if root is a leaf node, return loss directly
if root.col is None:
return pruned_loss, 1
# cur_loss record the loss function when root is not trimmed
cur_loss = 0.
# size record the size of this subtree
size = 1
selected_ind = X[:, root.col] == root.val
other_ind = X[:, root.col] != root.val
selected_X = X[selected_ind]
other_X = X[other_ind]
selected_Y = Y[selected_ind]
other_Y = Y[other_ind]
# trim the left node recursively
child_loss, child_size = self.calculate_prune_loss(root.left, selected_X, selected_Y)
cur_loss += child_loss
size += child_size
# trim the right node recursively
child_loss, child_size = self.calculate_prune_loss(root.right, other_X, other_Y)
cur_loss += child_loss
size += child_size
# the loss of prune the branches of this node
relative_prune_loss = (pruned_loss - cur_loss) / (size - 1)
root.relative_prune_loss = relative_prune_loss
self.possible_prune_threshold.add(relative_prune_loss)
return cur_loss, size
def query(self, root, x, prune_threshold):
# if root.relative_prune_loss is less than choosed prune threshold, it is trimmed
if root.col is None or root.relative_prune_loss < prune_threshold:
return root.label
elif x[root.col] != root.val:
return self.query(root.right, x, prune_threshold)
return self.query(root.left, x, prune_threshold)
def _predict(self, x, prune_threshold):
return self.query(self.root, x, prune_threshold)
def predict(self, X, prune_threshold=None):
if prune_threshold is None:
prune_threshold = self.prune_threshold
return np.array([self._predict(x, prune_threshold) for x in X])
def validate(self, val_X, val_Y, prune_threshold):
"""
I don't think using gini index for validation, as written in the book, is a good idea,
beacause gini index is unsupervised but there is label available in the validation set.
So I choose to use accuracy instead.
"""
pred = self.predict(val_X, prune_threshold)
return (pred == val_Y).mean()
def choose_threshold(self, val_X, val_Y, possible_prune_threshold):
"""
Choose the best subtree according to the validation set.
Cross-validation here simply refers to predict on a pre-split validation set.
"""
best_acc = -1.
best_prune_threshold = 0.
for prune_threshold in sorted(list(possible_prune_threshold)):
cur_acc = self.validate(val_X, val_Y, prune_threshold)
if self.verbose:
print(f"When prune threshold = {prune_threshold}, accuracy is {cur_acc}")
if cur_acc >= best_acc:
best_acc = cur_acc
best_prune_threshold = prune_threshold
return best_prune_threshold
if __name__ == "__main__":
console = Console(markup=False)
cart = ClassificationCART(verbose=True)
# -------------------------- Example 1 ----------------------------------------
print("Example 1:")
X = np.array([
['青年', '否', '否', '一般'],
['青年', '否', '否', '好'],
['青年', '是', '否', '好'],
['青年', '是', '是', '一般'],
['青年', '否', '否', '一般'],
['老年', '否', '否', '一般'],
['老年', '否', '否', '好'],
['老年', '是', '是', '好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '好'],
['老年', '是', '否', '好'],
['老年', '是', '否', '非常好'],
['老年', '否', '否', '一般'],
])
Y = np.array(['否', '否', '是', '是', '否', '否', '否', '是', '是', '是', '是', '是', '是', '是', '否'])
cart.fit(X, Y)
# Here I use the same dataset as the validation set
# Notice that it must be the full tree to be choosed this way
testX = np.array([
['青年', '否', '否', '一般'],
['青年', '否', '否', '好'],
['青年', '是', '否', '好'],
['青年', '是', '是', '一般'],
['青年', '否', '否', '一般'],
['老年', '否', '否', '一般'],
['老年', '否', '否', '好'],
['老年', '是', '是', '好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '好'],
['老年', '是', '否', '好'],
['老年', '是', '否', '非常好'],
['老年', '否', '否', '一般'],
])
testY = np.array(['否', '否', '是', '是', '否', '否', '否', '是', '是', '是', '是', '是', '是', '是', '否'])
pruned_cart = PrunedCART(cart, X, Y, testX, testY)
# show in table
pred = pruned_cart.predict(testX)
table = Table('x', 'y', 'pred')
for x, y, y_hat in zip(testX, testY, pred):
table.add_row(*map(str, [x, y, y_hat]))
console.print(table)