-
Notifications
You must be signed in to change notification settings - Fork 284
/
Copy pathRegressionCART.py
141 lines (120 loc) · 5.13 KB
/
RegressionCART.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
from pprint import pprint
from rich.console import Console
from rich.table import Table
import sys
import os
from pathlib import Path
sys.path.append(str(Path(os.path.abspath(__file__)).parent.parent))
from utils import *
class RegressionCART:
class Node:
def __init__(self, col, Y):
self.col = col
self.val = nan
self.left, self.right = None, None
self.label = Y.mean()
def __hash__(self):
return id(self)
def __init__(self, verbose=False, max_depth=inf):
self.verbose = verbose
self.max_depth = max_depth
def get_se(self, Y_cnt):
"""get square error given the count of each Y value"""
mean = sum(y * Y_cnt[y] for y in Y_cnt) / sum(Y_cnt.values())
square_error = sum((y - mean) ** 2 * Y_cnt[y] for y in Y_cnt)
return square_error
def get_se_of_split(self, Y1_cnt, Y2_cnt):
"""get the square error of a split"""
return self.get_se(Y1_cnt) + self.get_se(Y2_cnt)
def build(self, X, Y, depth=1):
cur = self.Node(None, Y)
if self.verbose:
print("Cur data:")
pprint(X)
print(Y)
best_se = inf
best_col, best_val = -1, nan
# The orignal content of the book doesn't discuss about when to cease.
# So I take the easiest way: cease when the data cannot be splitted,
# i.e., there are different labels
if depth < self.max_depth and len(set(Y)) > 1:
for col in range(len(X[0])):
smaller_Y_cnt = Counter()
larger_Y_cnt = Counter(Y)
sorted_inds = np.argsort(X[:, col])
# try all the possible split values
for i, ind in enumerate(sorted_inds):
smaller_Y_cnt[Y[ind]] += 1
larger_Y_cnt[Y[ind]] -= 1
# don't split on the largest number, otherwise the right part is empty
if sorted_inds[i] == sorted_inds[-1]:
break
# split only when this is the last one of consequent identical numbers
if i == len(X) - 1 or X[ind, col] != X[sorted_inds[i + 1], col]:
se = self.get_se_of_split(smaller_Y_cnt, larger_Y_cnt)
if se < best_se:
val = X[ind, col]
best_se, best_col, best_val = se, col, val
# Build left and right child nodes recursively
if self.verbose:
print(f"Split by value {best_val} of {best_col}th column")
smaller_ind = X[:, best_col] <= best_val
larger_ind = X[:, best_col] > best_val
smaller_X = X[smaller_ind]
larger_X = X[larger_ind]
smaller_Y = Y[smaller_ind]
larger_Y = Y[larger_ind]
cur.col = best_col
cur.val = best_val
cur.left = self.build(smaller_X, smaller_Y, depth + 1)
cur.right = self.build(larger_X, larger_Y, depth + 1)
elif self.verbose:
print("No split")
return cur
def _query(self, root, x):
if root.col is None:
return root
elif x[root.col] > root.val:
return self._query(root.right, x)
return self._query(root.left, x)
def query(self, root, x):
return self._query(root, x).label
def fit(self, X, Y):
self.root = self.build(X, Y)
def _predict(self, x):
return self.query(self.root, x)
def predict(self, X):
return [self._predict(x) for x in X]
if __name__ == "__main__":
def demonstrate(cart, X, Y, test_X, test_Y, desc):
print(desc)
console = Console(markup=False)
cart.fit(X, Y)
# show in table
pred = cart.predict(test_X)
table = Table('x', 'y', 'pred')
for x, y, y_hat in zip(test_X, test_Y, pred):
table.add_row(*map(str, [x, y, y_hat]))
console.print(table)
# -------------------------- Example 1 ----------------------------------------
cart = RegressionCART(verbose=True)
X = np.arange(1, 11).reshape(-1, 1)
Y = np.array([4.5, 4.75, 4.91, 5.34, 5.8, 7.05, 7.90, 8.23, 8.70, 9.00])
demonstrate(cart, X, Y, X, Y, "Example 1:")
# -------------------------- Example 2 ----------------------------------------
# show in table
cart = RegressionCART(verbose=True)
test_X = X + .5
test_Y = np.zeros_like(Y) + nan
demonstrate(cart, X, Y, test_X, test_Y, "Example 2:")
# -------------------------- Example 3 ----------------------------------------
cart = RegressionCART(verbose=True, max_depth=1)
X = np.arange(1, 11).reshape(-1, 1)
Y = np.array([4.5, 4.75, 4.91, 5.34, 5.8, 7.05, 7.90, 8.23, 8.70, 9.00])
demonstrate(cart, X, Y, X, Y, "Example 3: CART stump")
# -------------------------- Example 4 ----------------------------------------
cart = RegressionCART(verbose=True, max_depth=3)
X = np.arange(1, 11).reshape(-1, 1)
Y = np.array([4.5, 4.75, 4.91, 5.34, 5.8, 7.05, 7.90, 8.23, 8.70, 9.00])
demonstrate(cart, X, Y, X, Y, "Example 4: split twice")