-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTLBOBPP.m
149 lines (134 loc) · 3.35 KB
/
TLBOBPP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
clc;
clear;
close all;
%% Problem
tic
Items = [6 3 4 6 8 7 4 7 7 5 5 6 7 7 6 4 8 7 8 8 2 1 4 9 6];
BinSize = 35;
model = CreateModel(Items,BinSize); % Create Bin Packing Model
CostFunction = @(x) BinPackingCost(x, model); % Objective Function
nVar = 2*model.n-1; % Number of Decision Variables
VarSize = [1 nVar]; % Decision Variables Matrix Size
VarMin = 0; % Lower Bound of Decision Variables
VarMax = 1; % Upper Bound of Decision Variables
%% TLBO Parameters
MaxIt = 200; % Maximum Number of Iterations
nPop = 20; % Population Size
%% Start
% Empty Individuals
empty_individual.Position = [];
empty_individual.Cost = [];
empty_individual.Sol = [];
% Population Array
pop = repmat(empty_individual, nPop, 1);
% Initialize Best Solution
BestSol.Cost = inf;
% Population Members
for i = 1:nPop
pop(i).Position = unifrnd(VarMin, VarMax, VarSize);
[pop(i).Cost pop(i).Sol] = CostFunction(pop(i).Position);
if pop(i).Cost < BestSol.Cost
BestSol = pop(i);
end
end
% Best Cost Record
BestCost = zeros(MaxIt, 1);
%% TLBO
for it = 1:MaxIt
% Calculate Population Mean
Mean = 0;
for i = 1:nPop
Mean = Mean + pop(i).Position;
end
Mean = Mean/nPop;
% Select Teacher
Teacher = pop(1);
for i = 2:nPop
if pop(i).Cost < Teacher.Cost
Teacher = pop(i);
end
end
% Teacher Phase
for i = 1:nPop
% Create Empty Solution
newsol = empty_individual;
% Teaching Factor
TF = randi([1 2]);
% Teaching (moving towards teacher)
newsol.Position = pop(i).Position ...
+ rand(VarSize).*(Teacher.Position - TF*Mean);
% Clipping
newsol.Position = max(newsol.Position, VarMin);
newsol.Position = min(newsol.Position, VarMax);
% Evaluation
[newsol.Cost newsol.Sol] = CostFunction(newsol.Position);
% Comparision
if newsol.Cost<pop(i).Cost
pop(i) = newsol;
if pop(i).Cost < BestSol.Cost
BestSol = pop(i);
end
end
end
% Learner Phase
for i = 1:nPop
A = 1:nPop;
A(i) = [];
j = A(randi(nPop-1));
Step = pop(i).Position - pop(j).Position;
if pop(j).Cost < pop(i).Cost
Step = -Step;
end
% Create Empty Solution
newsol = empty_individual;
% Teaching (moving towards teacher)
newsol.Position = pop(i).Position + rand(VarSize).*Step;
% Clipping
newsol.Position = max(newsol.Position, VarMin);
newsol.Position = min(newsol.Position, VarMax);
% Evaluation
[newsol.Cost newsol.Sol] = CostFunction(newsol.Position);
% Comparision
if newsol.Cost<pop(i).Cost
pop(i) = newsol;
if pop(i).Cost < BestSol.Cost
BestSol = pop(i);
end
end
end
BestCost(it) = BestSol.Cost;
% Iteration
disp(['In ITR ' num2str(it) ': TLBO Cost Value Is = ' num2str(BestCost(it))]);
end
%% Results
figure;
plot(BestCost,'k', 'LineWidth', 2);
xlabel('ITR');
ylabel('Cost Value');
ax = gca;
ax.FontSize = 14;
ax.FontWeight='bold';
set(gca,'Color','c')
grid on;
%% Statistics
items=model.v;
itemindex=BestSol.Sol.B;
sii=size(itemindex);sii=sii(1,1);
for iii=1:sii
ii(iii)=string(num2str(itemindex{iii}));
end;
itemst=model.v;
for i=1: sii
itemvalue(i)=string(num2str(itemst(itemindex{i})));
end;
itemvalue=itemvalue';
%
disp(['Number of Items is ' num2str(model.n)]);
disp(['Items are ' num2str(items)]);
disp(['Bins size is ' num2str(model.Vmax)]);
disp(['Selected bins is ' num2str(BestCost(end))]);
disp(['Selected bins indexes are ']);
itemindex
disp(['Selected bins values are ']);
itemvalue
toc