-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
265 lines (220 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
import numpy as np
import os
import collections
import models
import utils
import time
import sys
import torch
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from utils.train_utils import *
from utils.scheduler import CosineAnnealingWarmUpRestarts
from torch.nn import DataParallel as DP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
if sys.platform == 'win32':
from tensorboardX import SummaryWriter
else:
from torch.utils.tensorboard import SummaryWriter
torch.autograd.set_detect_anomaly(True)
parser = argparse.ArgumentParser()
parser.add_argument('--workers', type=int, default=8, help='workers')
parser.add_argument('--print_freq', type=int, default=6, help='num epoch to train')
parser.add_argument('--num_epoch', type=int, default=500, help='num epoch to train')
parser.add_argument('--log_freq', type=int, default=300, help='num epoch to train')
parser.add_argument('--start_epoch', type=int, default=1, help='# to the first epoch')
parser.add_argument('--logs_dir', type=str, default='./logs', help='path to tensorboard')
parser.add_argument('--local_rank', type=int, default=-1, metavar='N', help='Local process rank.') # you need this argument in your scripts for DDP to work
parser.add_argument('--use_ddp', type=bool, default=False, help='utilize multi-gpus')
parser.add_argument('--use_dp', type=bool, default=True, help='utilize multi-gpus')
parser.add_argument('--is_master', type=bool, default=True, help='indicate whether the currnent is master')
parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='adam learning rate')
# parser.add_argument('--load_ckpt', type=bool, default=False, help='somewhere in your PC')
parser.add_argument('--load_ckpt', type=str, default='ckpt_alldataset_phase2.pth.tar', help='somewhere in your PC')
# parser.add_argument('--load_ckpt', type=str, default='ckpt_rp_phase2.pth.tar', help='somewhere in your PC')
# parser.add_argument('--load_ckpt', type=str, default='ckpt_thuman2_phase2.pth.tar', help='somewhere in your PC')
parser.add_argument('--data_path', type=str, default='/workspace/dataset/DATA_2048', help='path to dataset')
# parser.add_argument('--bg_path', type=str, default='/workspace/dataset/DATA_2048', help='path to dataset')
# parser.add_argument('--data_path', type=str, default='/workspace/dataset/RP_2048', help='path to dataset')
parser.add_argument('--checkpoints_load_path', type=str, default='./checkpoints/', help='path to save checkpoints')
parser.add_argument('--checkpoints_save_path', type=str, default='./checkpoints/save_path/', help='path to save checkpoints')
parser.add_argument('--exp_name', type=str, default='AllData', help='checkpoint name to be saved')
parser.add_argument('--phase', type=int, default=1, help='set training phase')
args = parser.parse_args()
print("Training Options Initialized...")
def train(data_loader, dataset, model, loss_builder, optimizer, scheduler, epoch,
is_train=True, phase=1, summary_dir=None, log_freq=40, is_master=True, device=None):
# set variables.
loss_batch = AverageMeter()
loss_batch_N = AverageMeter()
loss_batch_D = AverageMeter()
loss_batch_C = AverageMeter()
loss_batch_M = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
loss_sum = 0
if is_train is not True:
model.eval()
else:
model.train()
# putting log files outside the shared directory (the size becomes huge!)
if summary_dir is not None:
logger = SummaryWriter(summary_dir)
os.chmod(summary_dir, 0o777)
data_end = time.time()
iters = len(data_loader)
with tqdm(enumerate(data_loader)) as pbar:
for i, datum in pbar:
# set timers.
data_time.update(time.time() - data_end)
batch_end = time.time()
# fetch images from the loader
image, front_depth, back_depth, mask, init_affine, data_path = dataset.fetch_output(datum)
# initialize variables (in case of multiple images, they are returned as a tuple).
image, front_depth, back_depth, mask, init_affine = \
init_variables(image, front_depth, back_depth, mask, init_affine, device=device)
# compute and update losses.
loss, losses, input_var, pred_var, target_show \
= loss_builder.build_loss (model, image, front_depth, back_depth, mask, init_affine, phase, epoch, data_path)
lossN = losses['lossN']
lossD = losses['lossD']
lossC = losses['lossC']
lossM = losses['lossM']
loss_batch.update (loss.data, image.shape[0])
if lossN:
loss_batch_N.update (lossN.data, image.shape[0])
if lossD:
loss_batch_D.update (lossD.data, image.shape[0])
if lossC:
loss_batch_C.update (lossC.data, image.shape[0])
if lossM:
loss_batch_M.update (lossM.data, image.shape[0])
loss_sum = loss_sum + loss_batch.val
# proceed one step
if is_train is True:
optimizer.zero_grad ()
loss.backward()
optimizer.step()
scheduler.step(epoch=(epoch-1 + i/iters))
# update the batch time
batch_time.update(time.time() - batch_end)
if is_master:
pbar.set_description('[{0}][{1}/{2}] loss: {loss:.4f}, '
'lossN: {lossN:.4f}, lossD: {lossD:.4f}, lossC: {lossC:.4f}, lossM: {lossM:.4f}, lr: {lr:0.10f}'
.format(epoch, i, iters,
loss=loss_batch.val,
lossN=loss_batch_N.val,
lossD=loss_batch_D.val,
lossC=loss_batch_C.val,
lossM=loss_batch_M.val,
lr=optimizer.param_groups[-1]['lr'],))
batch_time.reset()
data_time.reset()
loss_batch.reset()
pbar.update(i/iters)
# save results for tensorboard
if summary_dir is not None and is_master and (i % log_freq == 0 or i in [0, 1]):
write_summary (logger, loss_builder, loss, input_var, pred_var, target_show, data_path,
phase, epoch, i, is_train=is_train, lr=optimizer.param_groups[-1]['lr'])
return loss_sum/len(data_loader)
def main():
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0,1,2,3"
os.environ["TORCH_DISTRIBUTED_DEBUG"]="DETAIL"
# 1. Training & GPU settings
torch.cuda.empty_cache()
cudnn.benchmark = True
cudnn.fastest = True
if args.use_ddp:
args.local_rank = int(os.environ["LOCAL_RANK"])
if args.local_rank != 0:
args.is_master = False
else:
args.local_rank = 0 # indicates designated gpu id.
torch.cuda.set_device(args.local_rank) # default -1?
args.device = torch.device("cuda:{}".format(args.local_rank))
world_size = torch.cuda.device_count ()
local_batch = args.batch_size
if args.use_dp:
local_batch = local_batch // world_size
args.train_list = 'train_test'
args.val_list = 'val'
args.bg_list = 'train_split_indoor09_1024'
args.model_name = 'Model_2K2K'
args.res = 2048
# 2. Training Model
model = getattr (models, args.model_name)(args.phase, args.device) #for ATUNet
dataset = getattr(utils, 'ReconDataset_2048') #
optimizer = torch.optim.Adam(model.parameters(), args.learning_rate)
scheduler = CosineAnnealingWarmUpRestarts(optimizer, T_0=5, T_warmup=0.01, decay=0.5)
scheduler.step(args.start_epoch - 1)
# load checkpoint if required
if args.load_ckpt and args.is_master:
ckpt = torch.load(args.checkpoints_load_path + args.load_ckpt) # model : single / ckpt : single & multi
model_state_dict = collections.OrderedDict( {k.replace('module.', ''): v for k, v in ckpt['model_state_dict'].items()} )
model.load_state_dict(model_state_dict, strict=False)
if args.phase == 1 :
pass
if args.phase == 2 :
for param in model.parameters():
param.requires_grad = False
for param in model.refine.parameters():
param.requires_grad = True
if world_size > 1:
if args.use_ddp:
if not torch.distributed.is_initialized():
ddp_setup (args.local_rank, world_size)
model.to(args.device)
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
elif args.use_dp: # data parallel.
gpu_ids = [k for k in range(world_size)]
model = DP(model, device_ids=gpu_ids, output_device=gpu_ids[0])
model.to(args.device)
else:
model.to(args.device)
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.to(args.device)
loss_builder = getattr(models, 'LossBuilderHuman_2048') (device=args.device)
print('dataset initialize end...')
train_dataset = dataset(data_path=args.data_path,
data_list=args.train_list,
is_training=True,
bg_path=args.data_path,
bg_list=args.bg_list,
res=args.res)
if args.use_ddp:
train_sampler = DistributedSampler(train_dataset)
shuffle = False # already shuffled.
else:
train_sampler = None
shuffle = True
summary_root = os.path.join (args.logs_dir, args.model_name + '_' + args.exp_name)
best_loss = np.inf
print('training start')
for current_epoch in range(args.start_epoch, args.num_epoch):
train_loader = torch.utils.data.DataLoader (
train_dataset, batch_size=args.batch_size, shuffle=shuffle, num_workers=args.workers,
sampler=train_sampler, pin_memory=False, drop_last=True)
if args.use_ddp:
train_sampler.set_epoch(current_epoch)
current_loss = train(train_loader, dataset, model, loss_builder, optimizer, scheduler, current_epoch,
is_train=True, phase=args.phase, summary_dir=summary_root, log_freq=args.log_freq, is_master=args.is_master, device=args.device)
is_best = False
if current_epoch % 1 == 0 or current_epoch == args.num_epoch:
if args.is_master:
if best_loss > current_loss:
best_loss = current_loss
is_best = True
save_checkpoint(model, optimizer, current_epoch, current_loss, is_best,
ckpt_path=args.checkpoints_save_path,
model_name=args.model_name.split('_')[0], exp_name=args.exp_name,
use_dp=args.use_dp, use_ddp=args.use_ddp)
if args.use_ddp:
ddp_cleanup()
if __name__ == '__main__':
main()