-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable_detect.py
46 lines (37 loc) · 1.31 KB
/
table_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
@author: nam157
"""
import cv2
import numpy as np
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
def init_detectron2(file_config: str, file_checkpoint: str):
cfg = get_cfg()
cfg.merge_from_file(file_config)
cfg.MODEL.WEIGHTS = file_checkpoint
predictor = DefaultPredictor(cfg)
return predictor
def make_prediction_header(img, predictor):
outputs = predictor(img)
for i, box in enumerate(
outputs["instances"].get_fields()["pred_boxes"].tensor.to("cpu").numpy()
):
x1, y1, x2, y2 = box
y2 += 6
header = np.array(img[int(0) : int(y1), int(0) : int(x2)], copy=True)
return header
def make_prediction(img, predictor):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 1))
border = cv2.copyMakeBorder(img, 2, 2, 2, 2, cv2.BORDER_CONSTANT, value=[255, 255])
outputs = predictor(border)
table_list = []
table_coords = []
for i, box in enumerate(
outputs["instances"].get_fields()["pred_boxes"].tensor.to("cpu").numpy()
):
x1, y1, x2, y2 = box
table_list.append(
np.array(img[int(y1) - 10 : int(y2) + 30, int(x1) : int(x2)], copy=True)
)
table_coords.append([int(x1), int(y1), int(x2 - x1), int(y2 - y1)])
return table_list, table_coords