-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtranslate.py
137 lines (115 loc) · 3.81 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import os
import numpy as np
import random
import time
import torch
import torch.nn as nn
import torch.nn.parallel
from torch import cuda
from torch.autograd import Variable
import lib
parser = argparse.ArgumentParser()
## Data options
parser.add_argument("-data", required=True,
help="Path to the *-train.pt file from preprocess.py")
parser.add_argument("-batch_size", default=32, help="Batch Size")
parser.add_argument("-save_dir", help="Directory to save predictions")
parser.add_argument("-load_from", required=True, help="Path to load a trained model.")
parser.add_argument("-test_src", required=True, help="Path to the file to be translated.")
# GPU
parser.add_argument("-gpus", default=[0], nargs="+", type=int,
help="Use CUDA")
parser.add_argument("-log_interval", type=int, default=100,
help="Print stats at this interval.")
parser.add_argument("-seed", type=int, default=3435,
help="Seed for random initialization")
opt = parser.parse_args()
print(opt)
# Set seed
torch.manual_seed(opt.seed)
np.random.seed(opt.seed)
random.seed(opt.seed)
opt.cuda = len(opt.gpus)
if opt.save_dir and not os.path.exists(opt.save_dir):
os.makedirs(opt.save_dir)
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with -gpus 1")
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if opt.cuda:
cuda.set_device(opt.gpus[0])
torch.cuda.manual_seed(opt.seed)
def makeTestData(srcFile,dicts):
print("Processing %s ..." % srcFile)
srcF = open(srcFile,'r')
text = srcF.read()
srcF.close()
lines=text.strip().split('\n')
src=[]
tgt=[]
srcDicts = dicts["src"]
count=0
for line in lines:
srcWords = line.split()
src += [srcDicts.convertToIdx(srcWords,
lib.Constants.UNK_WORD)]
count += 1
print("... %d sentences prepared for testing" % count)
tgt=src
return src,tgt,range(len(src))
def predict(model,dicts,data,pred_file):
model.eval()
all_preds=[]
max_length=50
for i in range(len(data)):
batch=data[i]
targets=batch[1]
attention_mask=batch[0][0].data.eq(lib.Constants.PAD).t()
model.decoder.attn.applyMask(attention_mask)
preds = model.translate(batch, max_length)
preds = preds.t().tolist()
targets=targets.data.t().tolist()
#hack
indices=batch[2]
new_batch=zip(preds,targets)
new_batch,indices=zip(*sorted(zip(new_batch,indices),key=lambda x: x[1]))
preds,targets=zip(*new_batch)
###
all_preds.extend(preds)
with open(pred_file, "w") as f:
for sent in all_preds:
sent = lib.Reward.clean_up_sentence(sent, remove_unk=False, remove_eos=True)
sent = [dicts["tgt"].getLabel(w) for w in sent]
x=" ".join(sent)+'\n'
f.write(x)
f.close()
def main():
print('Loading train data from "%s"' % opt.data)
dataset = torch.load(opt.data)
dicts = dataset["dicts"]
if opt.load_from is None:
print("REQUIRES PATH TO THE TRAINED MODEL\n")
else:
print("Loading from checkpoint at %s" % opt.load_from)
checkpoint = torch.load(opt.load_from)
model = checkpoint["model"]
optim = checkpoint["optim"]
# GPU.
if opt.cuda:
model.cuda(opt.gpus[0])
#model=torch.nn.DataParallel(model)
#torch.distributed.init_process_group(backend='tcp',rank=0,world_size=2)
#model = torch.nn.parallel.DistributedDataParallel(model)
# Generating Translations for test set
print('Creating test data\n')
src,tgt,pos=makeTestData(opt.test_src,dicts)
res={}
res["src"]=src
res["tgt"]=tgt
res["pos"]=pos
test_data = lib.Dataset(res, opt.batch_size, opt.cuda, eval=False)
pred_file = opt.test_src+".pred"
predict(model,dicts,test_data,pred_file)
print('Generated translations successfully\n')
if __name__ == "__main__":
main()