-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathpreprocess.py
165 lines (128 loc) · 5.76 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import torch
import lib
parser = argparse.ArgumentParser(description="preprocess.py")
parser.add_argument("-train_src", required=True,
help="Path to the training source data")
parser.add_argument("-train_tgt", required=True,
help="Path to the training target data")
parser.add_argument("-train_xe_src", required=True,
help="Path to the pre-training source data")
parser.add_argument("-train_xe_tgt", required=True,
help="Path to the pre-training target data")
parser.add_argument("-train_pg_src", required=True,
help="Path to the bandit training source data")
parser.add_argument("-train_pg_tgt", required=True,
help="Path to the bandit training target data")
parser.add_argument("-valid_src", required=True,
help="Path to the validation source data")
parser.add_argument("-valid_tgt", required=True,
help="Path to the validation target data")
parser.add_argument("-test_src", required=True,
help="Path to the test source data")
parser.add_argument("-test_tgt", required=True,
help="Path to the test target data")
parser.add_argument("-save_data", required=True,
help="Output file for the prepared data")
parser.add_argument("-src_vocab_size", type=int, default=50000,
help="Size of the source vocabulary")
parser.add_argument("-tgt_vocab_size", type=int, default=50000,
help="Size of the target vocabulary")
parser.add_argument("-seq_length", type=int, default=80,
help="Maximum sequence length")
parser.add_argument("-seed", type=int, default=3435,
help="Random seed")
parser.add_argument("-report_every", type=int, default=100000,
help="Report status every this many sentences")
opt = parser.parse_args()
torch.manual_seed(opt.seed)
def makeVocabulary(filename, size):
vocab = lib.Dict([lib.Constants.PAD_WORD, lib.Constants.UNK_WORD,
lib.Constants.BOS_WORD, lib.Constants.EOS_WORD])
with open(filename) as f:
for sent in f.readlines():
for word in sent.split():
#vocab.add(word)
vocab.add(word.lower()) # Lowercase all words
originalSize = vocab.size()
vocab = vocab.prune(size)
print("Created dictionary of size %d (pruned from %d)" %
(vocab.size(), originalSize))
return vocab
def initVocabulary(name, dataFile, vocabSize, saveFile):
print("Building " + name + " vocabulary...")
vocab = makeVocabulary(dataFile, vocabSize)
print("Saving " + name + " vocabulary to \"" + saveFile + "\"...")
vocab.writeFile(saveFile)
return vocab
'''def reorderSentences(pos, src, tgt, perm):
new_pos = [pos[idx] for idx in perm]
new_src = [src[idx] for idx in perm]
new_tgt = [tgt[idx] for idx in perm]
return new_pos, new_src, new_tgt
'''
def makeData(which, srcFile, tgtFile, srcDicts, tgtDicts):
src, tgt = [], []
sizes = []
count, ignored = 0, 0
print("Processing %s & %s ..." % (srcFile, tgtFile))
srcF = open(srcFile)
tgtF = open(tgtFile)
while True:
srcWords = srcF.readline().split()
tgtWords = tgtF.readline().split()
if not srcWords or not tgtWords:
if srcWords and not tgtWords or not srcWords and tgtWords:
print("WARNING: source and target do not have the same number of sentences")
break
if len(srcWords) <= opt.seq_length and len(tgtWords) <= opt.seq_length:
src += [srcDicts.convertToIdx(srcWords,
lib.Constants.UNK_WORD)]
tgt += [tgtDicts.convertToIdx(tgtWords,
lib.Constants.UNK_WORD,
eosWord=lib.Constants.EOS_WORD)]
sizes += [len(srcWords)]
else:
if which!="test":
ignored += 1
else:
src += [srcDicts.convertToIdx(srcWords,
lib.Constants.UNK_WORD)]
tgt += [tgtDicts.convertToIdx(tgtWords,
lib.Constants.UNK_WORD,
eosWord=lib.Constants.EOS_WORD)]
sizes += [len(srcWords)]
count += 1
if count % opt.report_every == 0:
print("... %d sentences prepared" % count)
srcF.close()
tgtF.close()
assert len(src) == len(tgt)
print("Prepared %d sentences (%d ignored due to length == 0 or > %d)" % (len(src), ignored, opt.seq_length))
return src, tgt, range(len(src))
def makeDataGeneral(which, src_path, tgt_path, dicts):
print("Preparing " + which + "...")
res = {}
res["src"], res["tgt"], res["pos"] = makeData(which, src_path, tgt_path,
dicts["src"], dicts["tgt"])
return res
def main():
dicts = {}
dicts["src"] = initVocabulary("source", opt.train_src, opt.src_vocab_size,
opt.save_data + ".src.dict")
dicts["tgt"] = initVocabulary("target", opt.train_tgt, opt.tgt_vocab_size,
opt.save_data + ".tgt.dict")
save_data = {}
save_data["dicts"] = dicts
save_data["train_xe"] = makeDataGeneral("train_xe", opt.train_xe_src,
opt.train_xe_tgt, dicts)
save_data["train_pg"] = makeDataGeneral("train_pg", opt.train_pg_src,
opt.train_pg_tgt, dicts)
save_data["valid"] = makeDataGeneral("valid", opt.valid_src, opt.valid_tgt,
dicts)
save_data["test"] = makeDataGeneral("test", opt.test_src, opt.test_tgt,
dicts)
print("Saving data to \"" + opt.save_data + "-train.pt\"...")
torch.save(save_data, opt.save_data + "-train.pt")
if __name__ == "__main__":
main()