-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_search_IUC.py
440 lines (336 loc) · 18.2 KB
/
train_search_IUC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os, time, glob
import logging
import argparse
import numpy as np
# import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
from betty.engine import Engine
from betty.configs import Config, EngineConfig
from betty.problems import ImplicitProblem
# from model_search import Network, Architecture
# from model_search_pcdarts import Network, Architecture
import utils
from resnet import *
import copy
import math
import unittest
import sys
import torch.nn as nn
import coco_data_loader
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence
from model_search import Network, Architecture
# from architect_ts import Architect
import json
from student import *
# from student_update import *
# from build_vocab import *
import pickle
torch.autograd.set_detect_anomaly(False)
torch.autograd.profiler.profile(False)
torch.autograd.profiler.emit_nvtx(False)
parser = argparse.ArgumentParser("coco_caption")
parser.add_argument('--data', type=str, default='../data',help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=32, help='batch size')
parser.add_argument('--learning_rate', type=float,default=0.025, help='init learning rate')
parser.add_argument('--learning_rate_min', type=float,default=0.001, help='min learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float,default=3e-4, help='weight decay')
parser.add_argument('--report_freq', type=float,default=50, help='report frequency')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--epochs', type=int, default=50,help='num of training epochs')
parser.add_argument('--init_channels', type=int,default=16, help='num of init channels')
parser.add_argument('--layers', type=int, default=8,help='total number of layers')
parser.add_argument('--model_path', type=str,default='saved_models', help='path to save the model')
parser.add_argument('--cutout', action='store_true',default=False, help='use cutout')
parser.add_argument('--debug', action='store_true',default=False, help='Debug')
parser.add_argument('--cutout_length', type=int,default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float,default=0.3, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--grad_clip', type=float,default=5, help='gradient clipping')
parser.add_argument('--train_portion', type=float,default=0.5, help='portion of training data')
parser.add_argument('--unrolled', action='store_true',default=False, help='use one-step unrolled validation loss')
parser.add_argument('--arch_learning_rate', type=float,default=3e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float,default=1e-3, help='weight decay for arch encoding')
parser.add_argument("--arch_steps", type=int, default=4, help="architecture steps")
parser.add_argument("--unroll_steps", type=int, default=1, help="unrolling steps")
parser.add_argument("--lam", type=float, help="lambda", default=1)
parser.add_argument("--gamma", type=float, help="gamma", default=1)
parser.add_argument('--enc_dec_learning_rate', type=float, default=1e-3)
parser.add_argument('--enc_dec_weight_decay', type=float, default=1e-3)
parser.add_argument('--learner_learning_rate', type=float, default=1e-3)
parser.add_argument('--learner_weight_decay', type=float, default=1e-3)
parser.add_argument('--is_parallel', type=int, default=0)
parser.add_argument('--student_arch', type=str, default='18')
parser.add_argument('--lang_score_freq', type=int, default=3)
parser.add_argument('--darts_type', type=str, default='DARTS', help='[DARTS, PCDARTS]')
args = parser.parse_args()
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log_iuc.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
device = torch.device("cuda:0")
args.save = 'search-{}-{}'.format(args.save, time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
json_file_path = os.path.join(args.data,'cocotalk.json')
h5_file_path = os.path.join(args.data,'cocotalk.h5')
CIFAR_CLASSES = 10
CIFAR100_CLASSES = 100
def idx_2_words(idxs, vocab):
ans = ""
for idx in idxs.squeeze().cpu().numpy():
# print(idx.shape)
# print(vocab.keys())
if ans == "" and int(idx) != 0:
ans += vocab[str(int(idx))]
elif int(idx) != 0:
ans += " " + vocab[str(int(idx))]
return ans
# if args.darts_type == 'DARTS':
# from model_search import Network, Architecture
# elif args.darts_type == 'PCDARTS':
# from model_search_pcdarts import Network, Architecture
np.random.seed(args.seed)
if not args.is_parallel:
torch.cuda.set_device(int(args.gpu))
logging.info('gpu device = %d' % int(args.gpu))
else:
logging.info('gpu device = %s' % args.gpu)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled = True
torch.cuda.manual_seed(args.seed)
logging.info("args = %s", args)
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
transforms = utils._data_transforms_coco(args) # change for coco
vocab = json.load(open(json_file_path))['ix_to_word']
train_queue, valid_queue, external_queue = coco_data_loader.get_loader(json_file=json_file_path,
h5_file = h5_file_path,
transform=transforms,
batch_size=args.batch_size,
shuffle=False,
num_workers=2,
args=args,
debug=args.debug)
decoder1 = RNNDecoder(vocab_size=len(vocab)+1, hidden_size=1024).cuda()
decoder2 = RNNDecoder(vocab_size=len(vocab)+1, hidden_size=1024).cuda()
learner = Learner(enc_arch=args.student_arch, vocab_size=len(vocab)+1, decoder=decoder1).cuda()
model = Network(C=args.init_channels, layers=args.layers, criterion=criterion, decoder=decoder2,steps=4, multiplier=4, stem_multiplier=3).cuda()
# model = Network(args.init_channels, args.layers, criterion, decoder=decoder2).cuda()
num_train = len(train_queue) # 50000
indices = list(range(num_train))
split = int(np.floor(args.train_portion * num_train))
report_freq = int(num_train * args.train_portion // args.batch_size + 1)
train_iters = int(args.epochs* (num_train * args.train_portion // args.batch_size + 1)* args.unroll_steps)
class Outer(ImplicitProblem):
def forward(self):
return self.module()
def training_step(self, batch):
input, caption, length, info = batch
alphas = self.forward()
input = input.cuda()
caption = caption.cuda()
target = caption.detach().cpu()
logits = self.inner1.module(input, caption, length)
loss = self.inner1.module.loss(input, caption, length).detach()
n = input.size(0)
latent_feats = self.inner1.module.encode(input)
idxs = self.inner1.module._decoder.sample(latent_feats).detach()
for i, idxz in enumerate(idxs):
pred = idx_2_words(idxz, vocab)
preds.append({
"image_id": info[i]['id'],
"caption": pred})
# prec1, prec5 = utils.accuracy(logits.cpu(), target.cpu(), topk=(1, 5))
# objs.update(loss.item(), n)
# top1.update(prec1.item(), n)
# top5.update(prec5.item(), n)
# if step % args.report_freq == 0:
# logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
# lang_scores = utils.score_lang(preds, args, cider_only=cider_only)
# # print(lang_scores)
assert not math.isnan(loss)
epoch = int(self.count*(args.batch_size+1)*args.unroll_steps//(num_train * args.train_portion))
print(f"Epoch: {epoch} || step: {self.count} || loss: {loss.item()}")
return loss
def configure_train_data_loader(self):
train_queue, valid_queue, external_queue = coco_data_loader.get_loader(json_file=json_file_path,
h5_file = h5_file_path,
transform=transforms,
batch_size=args.batch_size,
shuffle=False,
num_workers=2,
args=args,
debug=args.debug)
return valid_queue
def configure_module(self):
return Architecture(steps=args.arch_steps).to(device)
def configure_optimizer(self):
optimizer = optim.Adam(
self.module.parameters(),
lr=args.arch_learning_rate,
betas=(0.5, 0.999),
weight_decay=args.learner_weight_decay,
)
return optimizer
class Inner2(ImplicitProblem):
def forward(self, input, alphas, captions, lengths):
return self.module(input, alphas, captions, lengths)
def training_step(self, batch):
input_external, captions_external, lengths_external, infos_external = batch
input_external = input_external.cuda()
captions_external = captions_external.cuda(non_blocking=True)
# make pseudo dataset using enc-dec
input_pseudo, captions_pseudo, lengths_pseudo = coco_data_loader.get_pseudo_loader(self.inner1.module, input_external)
# train learner using pseudo dataset (train)
#############################################################################################
alphas = self.outer()
loss = self.module.loss(input_pseudo, alphas, captions_pseudo, lengths_pseudo)
#############################################################################################
return loss
def configure_train_data_loader(self):
train_queue, valid_queue, external_queue = coco_data_loader.get_loader(json_file=json_file_path,
h5_file = h5_file_path,
transform=transforms,
batch_size=args.batch_size,
shuffle=False,
num_workers=2,
args=args,
debug=args.debug)
return external_queue
def configure_module(self):
return learner
def configure_optimizer(self):
optimizer = torch.optim.SGD(
self.module.parameters(),
args.learner_learning_rate,
momentum=args.momentum,
weight_decay=args.learner_weight_decay)
return optimizer
def configure_scheduler(self):
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, float(args.epochs), eta_min=args.learning_rate_min)
return scheduler
class Inner1(ImplicitProblem):
def forward(self, input, alphas, captions, lengths):
return self.module(input, alphas, captions, lengths)
def training_step(self, batch):
input, captions, lengths, infos = batch
n = input.size(0)
input = input.cuda()
captions = captions.cuda(non_blocking=True)
#############################################################################################
alphas = self.outer()
target = captions.detach().cpu()
logits = self.module(input, alphas, captions, lengths).detach().cpu()
loss = self.module.loss(input, alphas, captions, lengths)
#############################################################################################
if args.debug and step%5 == 0:
# print(loss.item())
temp_logits = logits.view((captions.shape[0],captions.shape[1],-1))
for batch in range(min(temp_logits.shape[0],3)):
idxz = torch.argmax(temp_logits[batch,:,:],1).detach()
print("train pred: ",idx_2_words(idxz, vocab))
print("real: ",idx_2_words(captions[batch,:], vocab))
return loss
def configure_train_data_loader(self):
train_queue, valid_queue, external_queue = coco_data_loader.get_loader(json_file=json_file_path,
h5_file = h5_file_path,
transform=transforms,
batch_size=args.batch_size,
shuffle=False,
num_workers=2,
args=args,
debug=args.debug)
return train_queue
def configure_module(self):
return model
# return Network(args.init_channels, args.layers, criterion).cuda()
def configure_optimizer(self):
optimizer = torch.optim.SGD(
self.module.parameters(),
args.enc_dec_learning_rate,
momentum=args.momentum,
weight_decay=args.enc_dec_weight_decay)
return optimizer
def configure_scheduler(self):
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, float(args.epochs), eta_min=args.learning_rate_min)
return scheduler
class NASEngine(Engine):
@torch.no_grad()
def validation(self):
# corrects = 0
# total = 0
# for x, target in test_queue:
# x, target = x.to(device), target.to(device, non_blocking=True)
# alphas = self.outer()
# _, correct = self.inner1.module.loss(x, alphas, target, acc=True)
# corrects += correct
# total += x.size(0)
# acc = corrects / total
# logging.info('[*] Valid Acc.: %f', acc)
# print("[*] Valid Acc.:", acc)
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
model.eval()
preds = []
with torch.no_grad():
for step, (input, caption, length, info) in enumerate(valid_queue):
input = input.cuda()
alphas = self.outer()
caption = caption.cuda()
target = caption.detach().cpu()
logits = self.inner1.module(input, alphas, caption, length)
loss = self.inner1.module.loss(input, alphas, caption, length).detach()
n = input.size(0)
latent_feats = self.inner1.module.encode(input)
idxs = self.inner1.module._decoder.sample(latent_feats).detach()
for i, idxz in enumerate(idxs):
pred = idx_2_words(idxz, vocab)
preds.append({
"image_id": info[i]['id'],
"caption": pred})
prec1, prec5 = utils.accuracy(logits.cpu(), target.cpu(), topk=(1, 5))
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
if step % args.report_freq == 0:
logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
# lang_scores = utils.score_lang(preds, args, cider_only=cider_only)
alphas = self.outer()
logging.info('genotype = %s', self.inner1.module.genotype(alphas))
torch.save({"genotype": self.inner1.module.genotype(alphas)}, "genotype.t7")
# outer_config = Config(retain_graph=True, first_order=True,log_step=1, fp16=True)
# inner2_config = Config(type="darts", unroll_steps=args.unroll_steps, allow_unused=True, fp16=True)
# inner1_config = Config(type="darts", unroll_steps=args.unroll_steps, allow_unused=True, fp16=True)
outer_config = Config(retain_graph=True, first_order=True, log_step=1)
inner2_config = Config(type="darts", unroll_steps=args.unroll_steps, allow_unused=True)
inner1_config = Config(type="darts", unroll_steps=args.unroll_steps, allow_unused=True)
engine_config = EngineConfig(valid_step=report_freq,train_iters=train_iters,roll_back=True,)
outer = Outer(name="outer", config=outer_config, device=device)
inner1 = Inner1(name="inner1", config=inner1_config, device=device)
inner2 = Inner2(name="inner2", config=inner2_config, device=device)
problems = [outer, inner2, inner1]
# l2u = {inner1: [outer], inner1: [inner2], inner2: [outer], inner1: [inner2,outer]}
l2u = {inner1: [inner2,outer], inner2: [outer]}
u2l = {outer: [inner2,inner1]}
dependencies = {"l2u": l2u, "u2l": u2l}
engine = NASEngine(config=engine_config, problems=problems, dependencies=dependencies)
engine.run()