-
Notifications
You must be signed in to change notification settings - Fork 92
/
extract_ms_patches.py
310 lines (272 loc) · 11.1 KB
/
extract_ms_patches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import argparse
from collections import deque
from functools import reduce
import paddlers
import numpy as np
import cv2
try:
from osgeo import gdal
except:
import gdal
from tqdm import tqdm
from utils import time_it
IGN_CLS = 255
FMT = "im_{idx}{ext}"
class QuadTreeNode(object):
def __init__(self, i, j, h, w, level, cls_info=None):
super().__init__()
self.i = i
self.j = j
self.h = h
self.w = w
self.level = level
self.cls_info = cls_info
self.reset_children()
@property
def area(self):
return self.h * self.w
@property
def is_bg_node(self):
return self.cls_info is None
@property
def coords(self):
return (self.i, self.j, self.h, self.w)
def get_cls_cnt(self, cls):
if self.cls_info is None or cls >= len(self.cls_info):
return 0
return self.cls_info[cls]
def get_children(self):
for child in self.children:
if child is not None:
yield child
def reset_children(self):
self.children = [None, None, None, None]
def __repr__(self):
return f"{self.__class__.__name__}({self.i}, {self.j}, {self.h}, {self.w})"
class QuadTree(object):
def __init__(self, min_blk_size=256):
super().__init__()
self.min_blk_size = min_blk_size
self.h = None
self.w = None
self.root = None
def build_tree(self, mask_band, bg_cls=0):
cls_info_table = self.preprocess(mask_band, bg_cls)
n_rows = len(cls_info_table)
if n_rows == 0:
return None
n_cols = len(cls_info_table[0])
self.root = self._build_tree(cls_info_table, 0, n_rows - 1, 0,
n_cols - 1, 0)
return self.root
def preprocess(self, mask_ds, bg_cls):
h, w = mask_ds.RasterYSize, mask_ds.RasterXSize
s = self.min_blk_size
if s >= h or s >= w:
raise ValueError("`min_blk_size` must be smaller than image size.")
cls_info_table = []
for i in range(0, h, s):
cls_info_row = []
for j in range(0, w, s):
if i + s > h:
ch = h - i
else:
ch = s
if j + s > w:
cw = w - j
else:
cw = s
arr = mask_ds.ReadAsArray(j, i, cw, ch)
bins = np.bincount(arr.ravel())
if len(bins) > IGN_CLS:
bins = np.delete(bins, IGN_CLS)
if len(bins) > bg_cls and bins.sum() == bins[bg_cls]:
cls_info_row.append(None)
else:
cls_info_row.append(bins)
cls_info_table.append(cls_info_row)
return cls_info_table
def _build_tree(self, cls_info_table, i_st, i_ed, j_st, j_ed, level=0):
if i_ed < i_st or j_ed < j_st:
return None
i = i_st * self.min_blk_size
j = j_st * self.min_blk_size
h = (i_ed - i_st + 1) * self.min_blk_size
w = (j_ed - j_st + 1) * self.min_blk_size
if i_ed == i_st and j_ed == j_st:
return QuadTreeNode(i, j, h, w, level, cls_info_table[i_st][j_st])
i_mid = (i_ed + i_st) // 2
j_mid = (j_ed + j_st) // 2
root = QuadTreeNode(i, j, h, w, level)
root.children[0] = self._build_tree(cls_info_table, i_st, i_mid, j_st,
j_mid, level + 1)
root.children[1] = self._build_tree(cls_info_table, i_st, i_mid,
j_mid + 1, j_ed, level + 1)
root.children[2] = self._build_tree(cls_info_table, i_mid + 1, i_ed,
j_st, j_mid, level + 1)
root.children[3] = self._build_tree(cls_info_table, i_mid + 1, i_ed,
j_mid + 1, j_ed, level + 1)
bins_list = [
node.cls_info for node in root.get_children()
if node.cls_info is not None
]
if len(bins_list) > 0:
merged_bins = reduce(merge_bins, bins_list)
root.cls_info = merged_bins
else:
# Merge nodes
root.reset_children()
return root
def get_nodes(self, tar_cls=None, max_level=None, include_bg=True):
nodes = []
q = deque()
q.append(self.root)
while q:
node = q.popleft()
if max_level is None or node.level < max_level:
for child in node.get_children():
if not include_bg and child.is_bg_node:
continue
if tar_cls is not None and child.get_cls_cnt(tar_cls) == 0:
continue
nodes.append(child)
q.append(child)
return nodes
def visualize_regions(self, im_path, save_path='./vis_quadtree.png'):
im = paddlers.transforms.decode_image(im_path)
if im.ndim == 2:
im = np.stack([im] * 3, axis=2)
elif im.ndim == 3:
c = im.shape[2]
if c < 3:
raise ValueError(
"For multi-spectral images, the number of bands should not be less than 3."
)
else:
# Take first three bands as R, G, and B
im = im[..., :3]
else:
raise ValueError("Unrecognized data format.")
nodes = self.get_nodes(include_bg=True)
vis = np.ascontiguousarray(im)
for node in nodes:
i, j, h, w = node.coords
vis = cv2.rectangle(vis, (j, i), (j + w, i + h), (255, 0, 0), 2)
cv2.imwrite(save_path, vis[..., ::-1])
return save_path
def print_tree(self, node=None, level=0):
if node is None:
node = self.root
print(' ' * level + '-', node)
for child in node.get_children():
self.print_tree(child, level + 1)
def merge_bins(bins1, bins2):
if len(bins1) < len(bins2):
return merge_bins(bins2, bins1)
elif len(bins1) == len(bins2):
return bins1 + bins2
else:
return bins1 + np.concatenate(
[bins2, np.zeros(len(bins1) - len(bins2))])
@time_it
def extract_ms_patches(image_paths,
mask_path,
save_dir,
min_patch_size=256,
bg_class=0,
target_class=None,
max_level=None,
include_bg=False,
nonzero_ratio=None,
visualize=False):
def _save_patch(src_path, i, j, h, w, subdir=None):
src_path = osp.normpath(src_path)
src_name, src_ext = osp.splitext(osp.basename(src_path))
subdir = subdir if subdir is not None else src_name
dst_dir = osp.join(save_dir, subdir)
if not osp.exists(dst_dir):
os.makedirs(dst_dir)
dst_name = FMT.format(idx=idx, ext=src_ext)
dst_path = osp.join(dst_dir, dst_name)
gdal.Translate(dst_path, src_path, srcWin=(j, i, w, h))
return dst_path
if nonzero_ratio is not None:
print(
"`nonzero_ratio` is not None. More time will be consumed to filter out all-zero patches."
)
mask_ds = gdal.Open(mask_path)
quad_tree = QuadTree(min_blk_size=min_patch_size)
if mask_ds.RasterCount != 1:
raise ValueError("The mask image has more than 1 band.")
print("Start building quad tree...")
quad_tree.build_tree(mask_ds, bg_class)
if visualize:
print("Start drawing rectangles...")
save_path = quad_tree.visualize_regions(image_paths[0])
print(f"The visualization result is saved in {save_path} .")
print("Quad tree has been built. Now start collecting nodes...")
nodes = quad_tree.get_nodes(
tar_cls=target_class, max_level=max_level, include_bg=include_bg)
print("Nodes collected. Saving patches...")
for idx, node in enumerate(tqdm(nodes)):
i, j, h, w = node.coords
real_h = min(h, mask_ds.RasterYSize - i)
real_w = min(w, mask_ds.RasterXSize - j)
if real_h < h or real_w < w:
# Skip incomplete patches
continue
is_valid = True
if nonzero_ratio is not None:
for src_path in image_paths:
im_ds = gdal.Open(src_path)
arr = im_ds.ReadAsArray(j, i, real_w, real_h)
if np.count_nonzero(arr) / arr.size < nonzero_ratio:
is_valid = False
break
if is_valid:
for src_path in image_paths:
_save_patch(src_path, i, j, real_h, real_w)
_save_patch(mask_path, i, j, real_h, real_w, 'mask')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--image_paths", type=str, required=True, nargs='+', \
help="Path of images. Different images must have unique file names.")
parser.add_argument("--mask_path", type=str, required=True, \
help="Path of mask.")
parser.add_argument("--save_dir", type=str, default='output', \
help="Path to save the extracted patches.")
parser.add_argument("--min_patch_size", type=int, default=256, \
help="Minimum patch size (height and width).")
parser.add_argument("--bg_class", type=int, default=0, \
help="Index of the background category.")
parser.add_argument("--target_class", type=int, default=None, \
help="Index of the category of interest.")
parser.add_argument("--max_level", type=int, default=None, \
help="Maximum level of hierarchical patches.")
parser.add_argument("--include_bg", action='store_true', \
help="Include patches that contains only background pixels.")
parser.add_argument("--nonzero_ratio", type=float, default=None, \
help="Threshold for filtering out less informative patches.")
parser.add_argument("--visualize", action='store_true', \
help="Visualize the quadtree.")
args = parser.parse_args()
extract_ms_patches(args.image_paths, args.mask_path, args.save_dir,
args.min_patch_size, args.bg_class, args.target_class,
args.max_level, args.include_bg, args.nonzero_ratio,
args.visualize)