-
Notifications
You must be signed in to change notification settings - Fork 174
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
使用paddle2onnx将量化后的ppyoloe_plus_s导出为onnx后,onnxruntime推理结果与paddle静态图推理不符 #1441
Comments
输入对齐过了嘛? |
输入对齐了。图片尺寸均缩放为640,640,图片的预处理也一致 ppdet中的config为 onnx的输入也以此处理了 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB).astype(np.float32)
input_onnx = np.transpose(np.array([(frame-0)/255]), (0,3,1,2)) # n,c,h,w |
我的意思是,您应该把相同的数据同时用 PaddleInference 和 ONNXRuntime 推理一下,对比一下结果,抛开后处理 |
是的,ONNXRuntime的NMS和Paddle静态图的NMS在实际效果上不一定等价的,有区别 |
这个没有,所以让您对比NMS前的两个节点 |
一般来说量化后的精度差距1%内,量化前的差距0.1的-5次方内 |
您好,通过实验对比nms前的两个节点,量化后的精度差距比较大,对比结果: Input shape: (1, 3, 640, 640) mean: 0.45289892 max: 1.0 min: 0.08627451
Paddle output0 shape: (1, 8400, 4) mean: 320.46814 max: 831.07166 min: -280.5739
Paddle output1 shape: (1, 3, 8400) mean: 0.0025582889 max: 0.95241463 min: 1.0192251e-05
Onnx output0 shape: (1, 8400, 4) mean: 320.3321 max: 876.1374 min: -249.33652
Onnx output1 shape: (1, 3, 8400) mean: 0.001652396 max: 0.007899523 min: 0.00082200766
Output0 mean cosine distance: 0.011558139 mean euclidean distance 75.20233
Output1 mean cosine distance: 0.6552932 mean euclidean distance 1.5684191 量化前的精度差距基本没有: Input shape: (1, 3, 640, 640) mean: 0.45289892 max: 1.0 min: 0.08627451
Paddle output0 shape: (1, 8400, 4) mean: 320.18158 max: 815.7729 min: -231.14545
Paddle output1 shape: (1, 3, 8400) mean: 0.0025046652 max: 0.94339174 min: 4.4206395e-06
Onnx output0 shape: (1, 8400, 4) mean: 320.18158 max: 815.7726 min: -231.14482
Onnx output1 shape: (1, 3, 8400) mean: 0.002504666 max: 0.9433913 min: 4.440546e-06
Output0 mean cosine distance: -7.947286e-09 mean euclidean distance 0.00020155673
Output1 mean cosine distance: -7.947286e-08 mean euclidean distance 5.4948055e-06 还是可以确定是paddle2onnx过程中有精度损失。 我是通过在PaddleDetection动转静时加入exclude_nms命令去除nms节点的,静态图和onnx文件地址链接: https://pan.baidu.com/s/1wu8_b3gGsMCmA4rlZ73XVw 提取码: emb4 对比代码: import paddle
import numpy as np
import cv2
import onnxruntime as rt
def cosine_distance(a, b):
dot_product = np.sum(a * b, axis=-1)
norm_a = np.linalg.norm(a, axis=-1)
norm_b = np.linalg.norm(b, axis=-1)
cosine_similarity = dot_product / (norm_a * norm_b)
cosine_distance = 1 - cosine_similarity
return np.mean(cosine_distance)
def euclidean_distance(a, b):
diff = a - b
distances = np.linalg.norm(diff, axis=-1)
mean_distance = np.mean(distances)
return mean_distance
#-----------------paddle推理---------------------
paddle.enable_static()
# 加载模型
# [inference_program, feed_target_names, fetch_targets] = paddle.static.load_inference_model(
# path_prefix='./compare/ppyoloes_exclude_nms/ppyoloe_plus_crn_s_80e_abnormal_object',
# model_filename='model.pdmodel',
# params_filename='model.pdiparams',
# executor=paddle.static.Executor()
# )
[inference_program, feed_target_names, fetch_targets] = paddle.static.load_inference_model(
path_prefix='./compare/ppyoloes_qat_exclude_nms/ppyoloe_s_qat_abnormal_object',
model_filename='model.pdmodel',
params_filename='model.pdiparams',
executor=paddle.static.Executor()
)
# 准备输入数据
frame = cv2.imread("./yiwu.png")
original_im = frame.copy()
frame = cv2.resize(frame, (640, 640))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB).astype(np.float32)
input_image = np.transpose(np.array([(frame-0)/255]), (0,3,1,2)) # n,c,h,w
print("Input shape:", input_image.shape, "mean:", input_image.mean(), "max:", input_image.max(), "min: ", input_image.min())
input_scale = np.array([[1, 1]], dtype="float32")
# 创建执行器
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
# 执行推理
results = exe.run(program=inference_program,
feed={feed_target_names[0]: input_image, feed_target_names[1]: input_scale},
fetch_list=fetch_targets)
# cv2.imwrite("./compare/yiwu.png", vis_detection(original_im, results[0]))
print("Paddle output0 shape:", results[0].shape, "mean:", results[0].mean(), "max:", results[0].max(), "min: ", results[0].min())
print("Paddle output1 shape:", results[1].shape, "mean:", results[1].mean(), "max:", results[1].max(), "min: ", results[1].min())
#-----------------onnx推理---------------------
# sess = rt.InferenceSession("./compare/ppyoloes_exclude_nms.onnx", providers=['CPUExecutionProvider'])
sess = rt.InferenceSession("./compare/ppyoloes_qat_exclude_nms.onnx", providers=['CPUExecutionProvider'])
output_names = [sess.get_outputs()[0].name, sess.get_outputs()[1].name]
onnx_pred = sess.run(output_names, {sess.get_inputs()[0].name: input_image, sess.get_inputs()[1].name: input_scale})
print("Onnx output0 shape:", onnx_pred[0].shape, "mean:", onnx_pred[0].mean(), "max:", onnx_pred[0].max(), "min: ", onnx_pred[0].min())
print("Onnx output1 shape:", onnx_pred[1].shape, "mean:", onnx_pred[1].mean(), "max:", onnx_pred[1].max(), "min: ", onnx_pred[1].min())
print("Output0 mean cosine distance: ", cosine_distance(results[0], onnx_pred[0]), "mean euclidean distance", euclidean_distance(results[0], onnx_pred[0]))
print("Output1 mean cosine distance: ", cosine_distance(results[1], onnx_pred[1]), "mean euclidean distance", euclidean_distance(results[1], onnx_pred[1])) |
复现这个问题了,排查需要一些时间。其实 ONNX 和 Paddle 量化模型对应不上是很正常的,两者推理框架有差异,但是差这么多我也是第一次见。 |
明白了,非常感谢 |
问题描述
根据PaddleDetection提供的模型压缩文档,我将训练好的ppyoloe plus s模型进行量化训练。量化后的模型,以及导出为paddle静态图模型均推理无误。
但使用paddle2onnx将量化后的模型导出为onnx后,使用onnxruntime推理,无法得到任何检测框(使用paddle静态图推理可得到多个)
使用环境
使用的环境如下:
paddle2onnx == 1.2.11
paddledet == develop (>= 2.8.0)
paddlepaddle-gpu == 2.6.1.post116
paddleslim == 2.6.0
onnxruntime == 1.19.2
onnxruntime-gpu == 1.19.2
paddle静态模型及onnx文件
ppyoloe_s_qat_abnormal_object.zip
错误详情
原图:
paddle静态图推理效果:
在使用以下命令,导出为onnx文件
输出结果:
然而使用onnxruntime对导出的onnx文件推理,结果中没有任何检测框。请问是将量化后的模型导出时,哪里有精度丢失问题吗?非量化的模型按照此流程导出没有任何问题
The text was updated successfully, but these errors were encountered: