-
Notifications
You must be signed in to change notification settings - Fork 174
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
量化的飞桨模型部署正常,但是转化为onnx模型出现问题(非量化的模型转为onnx可以正常部署) #1251
Comments
为了对比我提供飞桨模型的运行结果飞桨模型非onnx模型的微调量化部署python tools/infer/predict_system.py --det_model_dir=output/CCPD/det_quant/infer/ --rec_model_dir=output/CCPD/rec_quant/infer/ --image_dir="F:/DataSet/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg" --rec_image_shape=3,48,320 运行结果[2024/05/18 02:34:52] ppocr INFO: In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320 |
幸苦提供一下量化以后的PaddleOCR模型,我这边测试一下 |
output/CCPD/det_quant/onnx/model.onnx: output/CCPD/rec_quant/onnx/model.onnx: |
你好,请问你在将检测模型进行量化训练时,训练速度如何呢?为什么我这边正常训练模型速度很快,但是转为量化训练就会慢很多。 |
This issue is stale because it has been open for 30 days with no activity. |
您好,您发的邮件已经收到,谢谢!
|
This issue is stale because it has been open for 30 days with no activity. |
您好,您发的邮件已经收到,谢谢!
|
请提供下述完整信息以便快速定位问题/Please provide the following information to quickly locate the problem
paddle2onnx 1.0.6
paddlepaddle 2.5.2
paddleslim 2.6.0
微调量化onnx部署
python tools/infer/predict_system.py --use_onnx=True --use_gpu=False --det_model_dir=output/CCPD/det_quant/onnx/model.onnx --rec_model_dir=output/CCPD/rec_quant/onnx/model.onnx --image_dir="F:/DataSet/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg" --rec_image_shape=3,48,320
[2024/05/18 02:21:46] ppocr INFO: In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320
[2024/05/18 02:21:46] ppocr DEBUG: dt_boxes num : 0, elapsed : 0.13833069801330566
[2024/05/18 02:21:46] ppocr DEBUG: rec_res num : 0, elapsed : 0.0
[2024/05/18 02:21:46] ppocr DEBUG: 0 Predict time of F:/DataSet/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg: 0.141s
[2024/05/18 02:21:46] ppocr DEBUG: The visualized image saved in ./inference_results\04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg
[2024/05/18 02:21:46] ppocr INFO: The predict total time is 0.1968538761138916
The text was updated successfully, but these errors were encountered: