-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathOutputs.pde
829 lines (761 loc) · 31.1 KB
/
Outputs.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/*
Copyright (C) 2009, 2010 Matt Reba, Jeremiah Dillingham
This file is part of BrewTroller.
BrewTroller is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
BrewTroller is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with BrewTroller. If not, see <http://www.gnu.org/licenses/>.
BrewTroller - Open Source Brewing Computer
Software Lead: Matt Reba (matt_AT_brewtroller_DOT_com)
Hardware Lead: Jeremiah Dillingham (jeremiah_AT_brewtroller_DOT_com)
Documentation, Forums and more information available at http://www.brewtroller.com
*/
extern const int HEAT_OUTPUTS_COUNT;
extern const byte HEAT_OUTPUTS[HEAT_OUTPUTS_COUNT][2];
#ifdef PID_FLOW_CONTROL
#define LAST_HEAT_OUTPUT VS_PUMP // not this is mostly done for code readability as VS_PUMP = VS_STEAM
#else
#ifdef USESTEAM
#define LAST_HEAT_OUTPUT VS_STEAM
#elif defined DIRECT_FIRED_RIMS
#define LAST_HEAT_OUTPUT VS_STEAM
#else
#define LAST_HEAT_OUTPUT VS_KETTLE
#endif
#endif
// set what the PID cycle time should be based on how fast the temp sensors will respond
#if TS_ONEWIRE_RES == 12
#define PID_CYCLE_TIME 750
#elif TS_ONEWIRE_RES == 11
#define PID_CYCLE_TIME 375
#elif TS_ONEWIRE_RES == 10
#define PID_CYCLE_TIME 188
#elif TS_ONEWIRE_RES == 9
#define PID_CYCLE_TIME 94
#else
// should not be this value, fail the compile
#ERROR
#endif
#ifdef PWM_BY_TIMER
// note there are some assumptions here, we assume that the COM1A1, COM1B1, COM1A0, and COM1B0
// bits are all 0 (as they should be on power up)
void pwmInit( void )
{
// set timer 1 prescale factor to 0
sbi(TCCR1B, CS10);
cbi(TCCR1B, CS12);
cbi(TCCR1B, CS11);
//clear timer 1 out of 8 bit phase correct PWM mode from sanguino init
cbi(TCCR1A, WGM10);
//set timer 1 into 16 bit phase and frequency correct PWM mode with ICR1 as TOP
sbi(TCCR1B, WGM13);
//set TOP as 1000, which makes the overflow on return to bottom for this mode happen ever
// 125uS given a 16mhz input clock, aka 8khz PWM frequency, the overflow ISR will handle
// the PWM outputs that are slower than 8khz, and the OCR1A/B ISR will handle the 8khz PWM outputs
ICR1 = 1000;
//enable timer 1 overflow interrupt (in this mode overflow happens when the timer counds down to BOTTOM
// after counting UP from BOTTOM to TOP.
sbi(TIMSK1, TOIE1);
}
//note that the code in any SIGNAL function is an ISR, and the code needs to kept short and fast
// it is important to avoid divides by non power of 2 numbers, remainder (mod) calculations, wait loops,
// or calls to functions that have wait loops. It's also not a good idea to write into any global that may be
// used else where in the code inside here without interrupt protecting all accesses to that variable in
// non ISR code, or making sure that if we do write to it in the ISR, we dont write/read to it in non ISR code
// (for example, below the heatPin objects are not written to if PIDEnable[i] = 1;
//
// Also the below ISR is set to nonblock so that interrupts are enabled as we enter the function
// this is done to make sure that we can run low counts in the compare registers, for example,
// a count of 1 could cause an interrupts 1 processor clock cycle after this interrupt is called
// sense it's called at bottom, and sense this has a fair amount of code in it, it's good to let the
// compare interrupts interrupt this interrupt (same with the UART and timer0 interrupts)
ISR(TIMER1_OVF_vect, ISR_NOBLOCK )
{
//count the number of times this has been called
timer1_overflow_count++;
for(byte i = 0; i <= LAST_HEAT_OUTPUT; i++)
{
// if PID is enabled, and NOT one of the 8khz PWM outputs then we can use this
if(PIDEnabled[i])
{
//init the cyclestart counter if needed
if(cycleStart[i] == 0 ) cycleStart[i] = timer1_overflow_count;
//if our period just ended, update to when the next period ends
if((timer1_overflow_count - cycleStart[i]) > PIDOutputCountEquivalent[i][0])
cycleStart[i] += PIDOutputCountEquivalent[i][0];
//check to see if the pin should be high or low (note when our 16 bit integer wraps we will have 1 period where
// the PWM % if cut short, because from the time of wrap until the next period
if ((!estop) && PIDOutputCountEquivalent[i][1] >= timer1_overflow_count - cycleStart[i]
&& timer1_overflow_count != cycleStart[i])
heatPin[i].set(HIGH); else heatPin[i].set(LOW);
}
}
}
#endif //PWM_BY_TIMER
void pinInit() {
#ifdef ALARM_PIN
alarmPin.setup(ALARM_PIN, OUTPUT);
#endif
//Setup HLT Pin
#ifdef HLTHEAT_PIN
heatPin[VS_HLT].setup(HLTHEAT_PIN, OUTPUT);
#endif
#ifdef SINGLE_VESSEL_SUPPORT
//Single Vessel: Also setup HLT pin for Mash/Kettle
#ifdef HLTHEAT_PIN
heatPin[VS_MASH].setup(HLTHEAT_PIN, OUTPUT);
heatPin[VS_KETTLE].setup(HLTHEAT_PIN, OUTPUT);
#endif
#else
//Setup Mash/Kettle Vessel Heat Pins for non-Single Vessel
#ifdef KETTLE_AS_MASH
//Kettle as Mash option
#ifdef KETTLEHEAT_PIN
heatPin[VS_MASH].setup(KETTLEHEAT_PIN, OUTPUT);
#endif
#else
//Normal Mash Vessel
#ifdef MASHHEAT_PIN
heatPin[VS_MASH].setup(MASHHEAT_PIN, OUTPUT);
#endif
#endif
#ifdef HLT_AS_KETTLE
//HLT as Kettle Option
#ifdef HLTHEAT_PIN
heatPin[VS_KETTLE].setup(HLTHEAT_PIN, OUTPUT);
#endif
#else
//Normal Kettle
#ifdef KETTLEHEAT_PIN
heatPin[VS_KETTLE].setup(KETTLEHEAT_PIN, OUTPUT);
#endif
#endif
#endif
#ifdef DIRECT_FIRED_RIMS
//MASHHEAT_PIN should be defined, so setup above.
heatPin[VS_STEAM].setup(STEAMHEAT_PIN, OUTPUT);
#endif
#ifdef USESTEAM
#ifdef STEAMHEAT_PIN
heatPin[VS_STEAM].setup(STEAMHEAT_PIN, OUTPUT);
#endif
#endif
#ifdef PID_FLOW_CONTROL
#ifdef PWMPUMP_PIN
heatPin[VS_PUMP].setup(PWMPUMP_PIN, OUTPUT);
#endif
#endif
#ifdef HEARTBEAT
hbPin.setup(HEARTBEAT_PIN, OUTPUT);
#endif
#ifdef DIGITAL_INPUTS
#if DIGIN_COUNT > 0
digInPin[0].setup(DIGIN1_PIN, INPUT);
#endif
#if DIGIN_COUNT > 1
digInPin[1].setup(DIGIN2_PIN, INPUT);
#endif
#if DIGIN_COUNT > 2
digInPin[2].setup(DIGIN3_PIN, INPUT);
#endif
#if DIGIN_COUNT > 3
digInPin[3].setup(DIGIN4_PIN, INPUT);
#endif
#if DIGIN_COUNT > 4
digInPin[4].setup(DIGIN5_PIN, INPUT);
#endif
#if DIGIN_COUNT > 5
digInPin[5].setup(DIGIN6_PIN, INPUT);
#endif
#endif
}
void pidInit() {
//note that the PIDCycle for the 8khz outputs is set to 10 because the TOP of the counter/timer is set to 1000
// this means that after it is multiplied by the PIDLIMIT it will be the proper value to give you the desired % output
// it also makes the % calculations work properly in the log, UI, and other area's.
#ifdef PID_FLOW_CONTROL
PIDCycle[VS_PUMP] = 1; // for PID pump flow the STEAM heat output is set to a fixed 10hz signal with 100 step outputs.
#endif
for (byte vessel = VS_HLT; vessel <= VS_KETTLE; vessel++) {
pid[vessel].SetInputLimits(0, 25500);
pid[vessel].SetOutputLimits(0, PIDCycle[vessel] * pidLimits[vessel]);
pid[vessel].SetTunings(getPIDp(vessel), getPIDi(vessel), getPIDd(vessel));
pid[vessel].SetMode(AUTO);
pid[vessel].SetSampleTime(PID_CYCLE_TIME);
}
pid[VS_KETTLE].SetMode(MANUAL);
#ifdef PID_FLOW_CONTROL
#ifdef USEMETRIC
pid[VS_PUMP].SetInputLimits(0, 255000); // equivalent of 25.5 LPM (255 * 100)
#else
pid[VS_PUMP].SetInputLimits(0, 6375); // equivalent of 6.375 GPM (255 * 25)
#endif
pid[VS_PUMP].SetOutputLimits(PID_FLOW_MIN, PIDCycle[VS_PUMP] * PIDLIMIT_STEAM);
pid[VS_PUMP].SetTunings(getPIDp(VS_PUMP), getPIDi(VS_PUMP), getPIDd(VS_PUMP));
#ifdef PID_CONTROL_MANUAL
pid[VS_PUMP].SetMode(MANUAL);
#else
pid[VS_PUMP].SetMode(AUTO);
#endif
pid[VS_PUMP].SetSampleTime(FLOWRATE_READ_INTERVAL);
#ifdef PID_CONTROL_MANUAL
nextcompute = millis() + FLOWRATE_READ_INTERVAL;
#endif
#else
#ifdef USEMETRIC
pid[VS_STEAM].SetInputLimits(0, 50000000 / steamPSens);
#else
pid[VS_STEAM].SetInputLimits(0, 7250000 / steamPSens);
#endif
pid[VS_STEAM].SetOutputLimits(0, PIDCycle[VS_STEAM] * PIDLIMIT_STEAM);
pid[VS_STEAM].SetTunings(getPIDp(VS_STEAM), getPIDi(VS_STEAM), getPIDd(VS_STEAM));
pid[VS_STEAM].SetMode(AUTO);
pid[VS_STEAM].SetSampleTime(PID_CYCLE_TIME);
#endif
#ifdef DEBUG_PID_GAIN
for (byte vessel = VS_HLT; vessel <= VS_STEAM; vessel++) logDebugPIDGain(vessel);
#endif
}
void resetOutputs() {
for (byte i = STEP_FILL; i <= STEP_CHILL; i++) stepExit(i); //Go through each step's exit functions to quit clean.
}
void resetHeatOutput(byte vessel) {
#ifdef PWM_BY_TIMER
uint8_t oldSREG;
#endif
setSetpoint(vessel, 0);
PIDOutput[vessel] = 0;
#ifdef PID_FEED_FORWARD
if(vessel == VS_MASH)
FFBias = 0;
#endif
#ifdef PWM_BY_TIMER
// need to disable interrupts so a write into here can finish before an interrupt can come in and read it
oldSREG = SREG;
cli();
//if we are not a 8K output then we can set it to 0, but if we are we need to set it to 1000 to make the duty cycle 0
PIDOutputCountEquivalent[vessel][1] = 0;
#endif
heatPin[vessel].set(LOW);
#ifdef PWM_BY_TIMER
SREG = oldSREG; // restore interrupts
#endif
}
#if defined PID_FLOW_CONTROL && defined PID_CONTROL_MANUAL
void processPID_FLOW_CONTROL(byte vessel) {
if(vessel == VS_PUMP){ //manual control if PID isnt working due to long sample times or other reasons
millistemp = millis();
if(millistemp >= nextcompute){
nextcompute += FLOWRATE_READ_INTERVAL;
if(setpoint[vessel] == 0) PIDOutput[vessel] = 0;
else{
if((long)setpoint[vessel] - flowRate[VS_KETTLE] > 100){
additioncount[0]++;
additioncount[1] = 0;
if(additioncount[0] > 5){ // this is here to break a case where adding 10 causes a change of 100 but lowering 10 causes a change of 100 off the setpoint and we just oscilate.
additioncount[0] = 0;
PIDOutput[vessel] += 5;
}
else PIDOutput[vessel] += 10;
}
else if((long)setpoint[vessel] - flowRate[VS_KETTLE] < -100){
additioncount[0]++;
additioncount[1] = 0;
if(additioncount[0] > 5){ // this is here to break a case where adding 10 causes a change of 100 but lowering 10 causes a change of 100 off the setpoint and we just oscilate.
additioncount[0] = 0;
PIDOutput[vessel] -= 5;
}
else PIDOutput[vessel] -= 10;
}
else if((long)setpoint[vessel] - flowRate[VS_KETTLE] > 50){
additioncount[0] = 0;
additioncount[1]++;
if(additioncount[0] > 5){ // this is here to break a case where adding 5 causes a change of 50 but lowering 5 causes a change of 50 off the setpoint and we just oscilate.
additioncount[1] = 0;
PIDOutput[vessel] += 1;
}
else PIDOutput[vessel] += 5;
}
else if((long)setpoint[vessel] - flowRate[VS_KETTLE] < -50){
additioncount[0] = 0;
additioncount[1]++;
if(additioncount[0] > 5){ // this is here to break a case where adding 5 causes a change of 50 but lowering 5 causes a change of 50 off the setpoint and we just oscilate.
additioncount[1] = 0;
PIDOutput[vessel] -= 1;
}
else PIDOutput[vessel] -= 5;
}
else if((long)setpoint[vessel] - flowRate[VS_KETTLE] > 10) PIDOutput[vessel] += 1;
else if((long)setpoint[vessel] - flowRate[VS_KETTLE] < -10) PIDOutput[vessel] -= 1;
if(PIDOutput[vessel] > pid[vessel].GetOUTMax()) PIDOutput[vessel] = pid[vessel].GetOUTMax();
else if(PIDOutput[vessel] < pid[vessel].GetOUTMin()) PIDOutput[vessel] = pid[vessel].GetOUTMin();
}
}
}
}
#endif // defined PID_FLOW_CONTROL && defined PID_CONTROL_MANUAL
/**
* Called by processHeatOutputs to process a PID-enabled heat output.
* Main things that happen here are updates to the PIDOutput and PIDInput arrays
* before calling compute() for the PID.
* Once the PID has been computed we check if it results in heat being needed
* and we call either heatPin[vessel[VS]].set(HIGH); or heatPin[vessel[VS]].set(LOW);
* NOTE: If PID is being processed by timer that happens elsewhere.
*/
void processHeatOutputsPIDEnabled(const byte vessel[]) {
#ifdef PWM_BY_TIMER
uint8_t oldSREG;
#endif
if (vessel[VS] != VS_STEAM && vessel[VS] != VS_KETTLE && temp[vessel[TS]] == BAD_TEMP) {
PIDOutput[vessel[VS]] = 0;
} else {
if (pid[vessel[VS]].GetMode() == AUTO) {
#ifdef PID_FLOW_CONTROL
if(vessel[VS] == VS_PUMP) PIDInput[vessel[VS]] = flowRate[VS_KETTLE];
#else
if (vessel[VS] == VS_STEAM) PIDInput[vessel[VS]] = steamPressure;
#endif
else {
PIDInput[vessel[VS]] = temp[vessel[TS]];
#ifdef PID_FEED_FORWARD
if(vessel[VS] == VS_MASH ) FFBias = temp[FEED_FORWARD_SENSOR];
#endif
}
pid[vessel[VS]].Compute();
#ifdef PID_FLOW_CONTROL
if(vessel[VS] == VS_PUMP && setpoint[vessel[VS]] == 0) PIDOutput[vessel[VS]] = 0; // if the setpoint is 0 then make sure we output 0, as dont want the min output always on.
#endif
#ifdef PID_FEED_FORWARD
if(vessel[VS] == VS_MASH && setpoint[vessel[VS]] == 0) PIDOutput[vessel[VS]] = 0; // found a bug where the mash output could be turned on if setpoint was 0 but FFBias was not 0.
// this fixes the bug but still lets the integral gain learn to compensate for the FFBias while
// the setpoint is 0.
#endif
}
#if defined PID_FLOW_CONTROL && defined PID_CONTROL_MANUAL
processPID_FLOW_CONTROL(vessel[VS]);
#endif // defined PID_FLOW_CONTROL && defined PID_CONTROL_MANUAL
}
#ifdef HLT_MIN_HEAT_VOL
if(vessel[VS] == VS_HLT && volAvg[vessel[VS]] < HLT_MIN_HEAT_VOL) PIDOutput[vessel[VS]] = 0;
#endif
#ifdef MASH_MIN_HEAT_VOL
if(vessel[VS] == VS_MASH && volAvg[vessel[VS]] < MASH_MIN_HEAT_VOL) PIDOutput[vessel[VS]] = 0;
#endif
#ifdef KETTLE_MIN_HEAT_VOL
if(vessel[VS] == VS_KETTLE && volAvg[vessel[VS]] < KETTLE_MIN_HEAT_VOL) PIDOutput[vessel[VS]] = 0;
#endif
//Trigger based element save
if (vesselMinTrigger(vessel[VS]) != NULL) if(!vesselMinTrigger(vessel[VS])->get()) PIDOutput[vessel[VS]] = 0;
#ifndef PWM_BY_TIMER
//only 1 call to millis needed here, and if we get hit with an interrupt we still want to calculate based on the first read value of it
unsigned long timestamp = millis();
if ((!estop) && PIDOutput[vessel[VS]] >= timestamp - cycleStart[vessel[VS]] && timestamp != cycleStart[vessel[VS]]) heatPin[vessel[VS]].set(HIGH); else heatPin[vessel[VS]].set(LOW);
#else
//here we do as much math as we can OUT SIDE the ISR, we calculate the PWM cycle time in counter/timer counts
// and place it in the [vessel][0] value, then calculate the timer counts to get the desired PWM % and place it in [vessel][1]
// need to disable interrupts so a write into here can finish before an interrupt can come in and read it
oldSREG = SREG;
cli();
PIDOutputCountEquivalent[vessel[VS]][0] = PIDCycle[vessel[VS]] * 800;
PIDOutputCountEquivalent[vessel[VS]][1] = PIDOutput[vessel[VS]] * 8;
SREG = oldSREG; // restore interrupts
#endif
if (PIDOutput[vessel[VS]] == 0) heatStatus[vessel[VS]] = 0; else heatStatus[vessel[VS]] = 1;
}
/**
* Called by processHeatOutputsNonPIDEnabled to process a heat output when heatStatus[vessel] == true.
*/
void processHeatOutputsNonPIDEnabledWithHeatOn(const byte vessel[]) {
// determine if setpoint has ben reached, or there is a bad temp reading.
// If it either condition, set the pin low (turn it off).
// we do not want the RIMS (in DIRECT_FIRED_RIMS) processed here either; it is taken care of in the MASH loop
//Indicates if the minimum volume has been reached (defaults to true in case trigger is not used)
boolean vesselMinTrig = 1;
if (vesselMinTrigger(vessel[VS]) != NULL) vesselMinTrig = (vesselMinTrigger(vessel[VS])->get());
if (
estop
|| (!vesselMinTrig)
|| (vessel[VS] != VS_STEAM && (temp[vessel[TS]] == BAD_TEMP || temp[vessel[TS]] >= setpoint[vessel[VS]]))
#ifndef DIRECT_FIRE_RIMS
|| (vessel[VS] == VS_STEAM && steamPressure >= setpoint[vessel[VS]])
#endif
) {
// For DIRECT_FIRED_RIMS, the setpoint for both VS_MASH & VS_STEAM should be the same,
// so nothing to do here.
heatPin[vessel[VS]].set(LOW);
heatStatus[vessel[VS]] = 0;
} else {
// setpoint has not been reached, and temp reading is valid.
// Insure that the correct heat pin is enabled, and heatStatus updated.
#ifdef DIRECT_FIRED_RIMS
// When temp[VS_MASH] is less than setpoint[VS_MASH] - RIMS_TEMP_OFFSET, then
// the VS_MASH pint should be set high, and VS_STEAM set low. If the different
// is within RIMS_TEMP_OFFSET, then the opposite.
if (vessel[VS] == VS_MASH) {
if (temp[TS_MASH] >= setpoint[VS_MASH] - (RIMS_TEMP_OFFSET * 100)) {
heatPin[VS_MASH].set(LOW);
heatStatus[VS_MASH] = 0;
if ((temp[TS_MASH] < setpoint[VS_MASH]) && (temp[RIMS_TEMP_SENSOR] < (RIMS_MAX_TEMP * 100))) {
heatPin[VS_STEAM].set(HIGH);
heatStatus[VS_STEAM] = 1;
} else {
heatPin[VS_STEAM].set(LOW);
heatStatus[VS_STEAM] = 0;
}
} else {
heatPin[VS_MASH].set(HIGH);
heatStatus[VS_MASH] = 1;
heatPin[VS_STEAM].set(LOW);
heatStatus[VS_STEAM] = 0;
}
} else {
heatPin[vessel[VS]].set(HIGH);
heatStatus[vessel[VS]] = 1;
}
#else
heatPin[vessel[VS]].set(HIGH);
heatStatus[vessel[VS]] = 1;
#endif
}
}
/**
* Called by processHeatOutputsNonPIDEnabled to process a heat output when heatStatus[vessel] == false.
*/
void processHeatOutputsNonPIDEnabledWithHeatOff(const byte vessel[]) {
// Determine is the vessel temperature is below the setpoint, accounting for hysteresis.
// we do not want the RIMS (in DIRECT_FIRED_RIMS) processed here either; it is taken care of in the MASH loop
//Indicates if the minimum volume has been reached (defaults to true in case trigger is not used)
boolean vesselMinTrig = 1;
if (vesselMinTrigger(vessel[VS]) != NULL) vesselMinTrig = (vesselMinTrigger(vessel[VS])->get());
if (
!estop
&& vesselMinTrig
&& (
(vessel[VS] != VS_STEAM && temp[vessel[TS]] != BAD_TEMP && (setpoint[vessel[VS]] - temp[vessel[TS]]) >= hysteresis[vessel[VS]] * 10)
#ifndef DIRECT_FIRE_RIMS
|| (vessel[VS] == VS_STEAM && (setpoint[vessel[VS]] - steamPressure) >= hysteresis[vessel[VS]] * 100)
#endif
)
) {
// The temperature of the vessel is below what we want, so insure the correct pin is tunred on,
// and the heatStatus is updated.
#ifdef DIRECT_FIRED_RIMS
// When temp[VS_MASH] is less than setpoint[VS_MASH] - RIMS_TEMP_OFFSET, then
// the VS_MASH pint should be set high, and VS_STEAM set low. If the difference
// is within RIMS_TEMP_OFFSET, then the opposite.
if (vessel[VS] == VS_MASH) {
if (temp[TS_MASH] >= setpoint[VS_MASH] - (RIMS_TEMP_OFFSET * 100)) {
heatPin[VS_MASH].set(LOW);
heatStatus[VS_MASH] = 0;
if ((temp[TS_MASH] < setpoint[VS_MASH]) && (temp[RIMS_TEMP_SENSOR] < (RIMS_MAX_TEMP * 100))) {
heatPin[VS_STEAM].set(HIGH);
heatStatus[VS_STEAM] = 1;
} else {
heatPin[VS_STEAM].set(LOW);
heatStatus[VS_STEAM] = 0;
}
} else {
heatPin[VS_MASH].set(HIGH);
heatStatus[VS_MASH] = 1;
heatPin[VS_STEAM].set(LOW);
heatStatus[VS_STEAM] = 0;
}
} else {
heatPin[vessel[VS]].set(HIGH);
heatStatus[vessel[VS]] = 1;
}
#else
heatPin[vessel[VS]].set(HIGH);
heatStatus[vessel[VS]] = 1;
#endif
} else {
// The heat is maintaining currently desired value, so insure heat source is (still) off.
// For DIRECT_FIRED_RIMS, the setpoint for both VS_MASH & VS_STEAM should be the same,
// so nothing to do here.
heatPin[vessel[VS]].set(LOW);
heatStatus[vessel[VS]] = 0;
#ifdef DIRECT_FIRED_RIMS
if (vessel[VS] == VS_MASH) {
if ((!estop) && (temp[TS_MASH] < setpoint[VS_MASH]) && (temp[RIMS_TEMP_SENSOR] < (RIMS_MAX_TEMP * 100))) {
heatPin[VS_STEAM].set(HIGH);
heatStatus[VS_STEAM] = 1;
} else {
heatPin[VS_STEAM].set(LOW);
heatStatus[VS_STEAM] = 0;
}
}
#endif
}
}
/**
* Called by processHeatOutputs to process a nonPID-enabled heat output.
*/
void processHeatOutputsNonPIDEnabled(const byte vessel[]) {
if (heatStatus[vessel[VS]]) {
processHeatOutputsNonPIDEnabledWithHeatOn(vessel);
} else {
processHeatOutputsNonPIDEnabledWithHeatOff(vessel);
}
#ifdef DIRECT_FIRED_RIMS
// Check to insure RIMS is below safe level
if (temp[RIMS_TEMP_SENSOR] >= (RIMS_ALARM_TEMP * 100) ) {
#ifdef ALARM_PIN
alarmPin.set(1); //Sound the alarm.
#endif
} else {
#ifdef ALARM_PIN
alarmPin.set(0);
#endif
}
#endif
}
/*
* Things get a little complex here, so let's break it down.
* processHeatOutputs() is called by the main brewCore() loop.
* Processes the RIMS_MLT_SETPOINT_DELAY, which waits a number of
* milliseconds before enabling the setpoint for RIMS.
* Calls boilController() which manages the auto boil process. If
* auto boil is active it may set PIDOutput[VS_KETTLE]
* Then it loops through all of the vessels (using HEAT_OUTPUTS_COUNT
* as a maximum) and:
* Skips various vessels depending on certain conditions.
* If the PID for the vessel is enabled it calls processHeatOutputsPIDEnabled
* otherwise it calls processHeatOutputsNonPIDEnabled.
*/
void processHeatOutputs() {
//Process Heat Outputs
#ifdef RIMS_MLT_SETPOINT_DELAY
if(timetoset <= millis() && timetoset != 0){
RIMStimeExpired = 1;
timetoset = 0;
setSetpoint(TS_MASH, getProgMashTemp(stepProgram[steptoset], steptoset - 5));
}
#endif
//Process Auto Boil Control Logic
boilController();
for (int vesselIndex = 0; vesselIndex < HEAT_OUTPUTS_COUNT; vesselIndex++) {
#ifndef PWM_BY_TIMER
unsigned long timestamp = millis();
if (cycleStart[vesselIndex] == 0) cycleStart[vesselIndex] = timestamp;
if (timestamp - cycleStart[vesselIndex] > PIDCycle[vesselIndex] * 100) cycleStart[vesselIndex] += PIDCycle[vesselIndex] * 100;
#endif
#ifdef HLT_AS_KETTLE
if (
(vesselIndex == VS_KETTLE && setpoint[VS_HLT]) //Skip kettle heat if HLT setpoint is active
|| (vesselIndex == VS_HLT && !setpoint[VS_HLT] && setpoint[VS_KETTLE]) //Skip HLT if HLT setpoint is inactive and Kettle setpoint is active
) continue;
#elif defined KETTLE_AS_MASH
if (
(vesselIndex == VS_KETTLE && setpoint[VS_MASH]) //Skip kettle heat if Mash setpoint is active
|| (vesselIndex == VS_MASH && !setpoint[VS_MASH] && setpoint[VS_KETTLE]) //Skip Mash if Mash setpoint is inactive and Kettle setpoint is active
) continue;
#elif defined SINGLE_VESSEL_SUPPORT
if (
(!setpoint[vesselIndex] && (setpoint[VS_HLT] || setpoint[VS_MASH] || setpoint[VS_KETTLE]))
|| (setpoint[VS_MASH] && vesselIndex != VS_MASH)
|| (setpoint[VS_KETTLE] && vesselIndex == VS_HLT)
) continue;
#endif
#ifdef RGBIO8_ENABLE
if (softSwitchHeat[vesselIndex] == SOFTSWITCH_AUTO) {
// Auto
#endif
if (PIDEnabled[HEAT_OUTPUTS[vesselIndex][VS]]) {
processHeatOutputsPIDEnabled(HEAT_OUTPUTS[vesselIndex]);
} else {
processHeatOutputsNonPIDEnabled(HEAT_OUTPUTS[vesselIndex]);
}
#ifdef RGBIO8_ENABLE
}
else if (!estop && softSwitchHeat[vesselIndex] == SOFTSWITCH_ON) {
// On
heatPin[vesselIndex].set(HIGH);
heatStatus[vesselIndex] = 1;
}
else {
// Off, or invalid, which is as good as Off
heatPin[vesselIndex].set(LOW);
heatStatus[vesselIndex] = 0;
}
#endif
}
}
#ifdef PVOUT
void updateValves() {
unsigned long vlvBits = computeValveBits();
if (vlvBits != Valves.get()) {
Valves.set(vlvBits);
}
}
void processAutoValve() {
#ifdef HLT_MIN_REFILL
unsigned long HLTStopVol;
#endif
//Do Valves
if (autoValve[AV_FILL]) {
if (volAvg[VS_HLT] < tgtVol[VS_HLT]) bitSet(actProfiles, VLV_FILLHLT);
else bitClear(actProfiles, VLV_FILLHLT);
if (volAvg[VS_MASH] < tgtVol[VS_MASH]) bitSet(actProfiles, VLV_FILLMASH);
else bitClear(actProfiles, VLV_FILLMASH);
}
//HLT/MASH/KETTLE AV Logic
for (byte i = VS_HLT; i <= VS_KETTLE; i++) {
byte vlvHeat = vesselVLVHeat(i);
byte vlvIdle = vesselVLVIdle(i);
if (autoValve[vesselAV(i)]) {
if (heatStatus[i]) {
if (vlvConfigIsActive(vlvIdle)) bitClear(actProfiles, vlvIdle);
if (!vlvConfigIsActive(vlvHeat)) bitSet(actProfiles, vlvHeat);
} else {
if (vlvConfigIsActive(vlvHeat)) bitClear(actProfiles, vlvHeat);
if (!vlvConfigIsActive(vlvIdle)) bitSet(actProfiles, vlvIdle);
}
}
}
if (autoValve[AV_SPARGEIN]) {
if (volAvg[VS_HLT] > tgtVol[VS_HLT]) bitSet(actProfiles, VLV_SPARGEIN);
else bitClear(actProfiles, VLV_SPARGEIN);
}
if (autoValve[AV_SPARGEOUT]) {
if (volAvg[VS_KETTLE] < tgtVol[VS_KETTLE]) bitSet(actProfiles, VLV_SPARGEOUT);
else bitClear(actProfiles, VLV_SPARGEOUT);
}
if (autoValve[AV_FLYSPARGE]) {
if (volAvg[VS_KETTLE] < tgtVol[VS_KETTLE]) {
#ifdef SPARGE_IN_PUMP_CONTROL
if((long)volAvg[VS_KETTLE] - (long)prevSpargeVol[0] >= SPARGE_IN_HYSTERESIS)
{
#ifdef HLT_MIN_REFILL
HLTStopVol = (SpargeVol > HLT_MIN_REFILL_VOL ? getVolLoss(VS_HLT) : (HLT_MIN_REFILL_VOL - SpargeVol));
if(volAvg[VS_HLT] > HLTStopVol + 20)
#else
if(volAvg[VS_HLT] > getVolLoss(VS_HLT) + 20)
#endif
bitSet(actProfiles, VLV_SPARGEIN);
prevSpargeVol[0] = volAvg[VS_KETTLE];
}
#ifdef HLT_FLY_SPARGE_STOP
else if((long)prevSpargeVol[1] - (long)volAvg[VS_HLT] >= SPARGE_IN_HYSTERESIS || volAvg[VS_HLT] < HLT_FLY_SPARGE_STOP_VOLUME + 20)
#else
else if((long)prevSpargeVol[1] - (long)volAvg[VS_HLT] >= SPARGE_IN_HYSTERESIS || volAvg[VS_HLT] < getVolLoss(VS_HLT) + 20)
#endif
{
bitClear(actProfiles, VLV_SPARGEIN);
prevSpargeVol[1] = volAvg[VS_HLT];
}
#else
bitSet(actProfiles, VLV_SPARGEIN);
#endif
bitSet(actProfiles, VLV_SPARGEOUT);
} else {
bitClear(actProfiles, VLV_SPARGEIN);
bitClear(actProfiles, VLV_SPARGEOUT);
}
}
if (autoValve[AV_CHILL]) {
//Needs work
/*
//If Pumping beer
if (vlvConfigIsActive(VLV_CHILLBEER)) {
//Cut beer if exceeds pitch + 1
if (temp[TS_BEEROUT] > pitchTemp + 1.0) bitClear(actProfiles, VLV_CHILLBEER);
} else {
//Enable beer if chiller H2O output is below pitch
//ADD MIN DELAY!
if (temp[TS_H2OOUT] < pitchTemp - 1.0) bitSet(actProfiles, VLV_CHILLBEER);
}
//If chiller water is running
if (vlvConfigIsActive(VLV_CHILLH2O)) {
//Cut H2O if beer below pitch - 1
if (temp[TS_BEEROUT] < pitchTemp - 1.0) bitClear(actProfiles, VLV_CHILLH2O);
} else {
//Enable H2O if chiller H2O output is at pitch
//ADD MIN DELAY!
if (temp[TS_H2OOUT] >= pitchTemp) bitSet(actProfiles, VLV_CHILLH2O);
}
*/
}
}
#endif //#ifdef PVOUT
unsigned long computeValveBits() {
if (estop) return 0;
unsigned long vlvBits = 0;
//Force certain valve profiles off based on trigger pins if enabled
if (TriggerPin[TRIGGER_SPARGEMAX] != NULL) if(TriggerPin[TRIGGER_SPARGEMAX]->get()) bitClear(actProfiles, VLV_SPARGEIN);
if (TriggerPin[TRIGGER_HLTMIN] != NULL) if(!TriggerPin[TRIGGER_HLTMIN]->get()) bitClear(actProfiles, VLV_HLTHEAT);
if (TriggerPin[TRIGGER_MASHMIN] != NULL) if(!TriggerPin[TRIGGER_MASHMIN]->get()) bitClear(actProfiles, VLV_MASHHEAT);
if (TriggerPin[TRIGGER_KETTLEMIN] != NULL) if(!TriggerPin[TRIGGER_KETTLEMIN]->get()) bitClear(actProfiles, VLV_KETTLEHEAT);
for (byte i = 0; i < NUM_VLVCFGS; i++) {
if (bitRead(actProfiles, i)) {
vlvBits |= vlvConfig[i];
}
}
#ifdef RGBIO8_ENABLE
// Build the softswitch masks
// Any bits set to 1 on offMask will force the corresponding valve off.
unsigned long offMask = 0;
// Any bits set to 1 on onMask will force the corresponding valve on.
unsigned long onMask = 0;
for (int i = 0; i < PVOUT_COUNT; i++) {
if (softSwitchPv[i] == SOFTSWITCH_OFF) {
offMask |= (1 << i);
}
else if (softSwitchPv[i] == SOFTSWITCH_ON) {
onMask |= (1 << i);
}
}
// Apply the masks to the pre-computed valve bits.
offMask = ~offMask;
vlvBits &= offMask;
vlvBits |= onMask;
#endif
return vlvBits;
}
boolean vlvConfigIsActive(byte profile) {
//An empty valve profile cannot be active
if (!vlvConfig[profile]) return 0;
return bitRead(actProfiles, profile);
}
void boilController () {
if (boilControlState == CONTROLSTATE_AUTO) {
if(temp[TS_KETTLE] < setpoint[TS_KETTLE]) PIDOutput[VS_KETTLE] = PIDCycle[VS_KETTLE] * PIDLIMIT_KETTLE;
else PIDOutput[VS_KETTLE] = PIDCycle[VS_KETTLE] * min(boilPwr, PIDLIMIT_KETTLE);
}
}
//Map AutoValve Profiles to Vessels
byte vesselAV(byte vessel) {
if (vessel == VS_HLT) return AV_HLT;
else if (vessel == VS_MASH) return AV_MASH;
else if (vessel == VS_KETTLE) return AV_KETTLE;
}
byte vesselVLVHeat(byte vessel) {
if (vessel == VS_HLT) return VLV_HLTHEAT;
else if (vessel == VS_MASH) return VLV_MASHHEAT;
else if (vessel == VS_KETTLE) return VLV_KETTLEHEAT;
}
byte vesselVLVIdle(byte vessel) {
if (vessel == VS_HLT) return VLV_HLTIDLE;
else if (vessel == VS_MASH) return VLV_MASHIDLE;
else if (vessel == VS_KETTLE) return VLV_KETTLEIDLE;
}
pin * vesselMinTrigger(byte vessel) {
if (vessel == VS_HLT) return TriggerPin[TRIGGER_HLTMIN];
else if (vessel == VS_MASH) return TriggerPin[TRIGGER_MASHMIN];
else if (vessel == VS_KETTLE) return TriggerPin[TRIGGER_KETTLEMIN];
else return NULL;
}
byte autoValveBitmask(void) {
byte modeMask = 0;
for (byte i = AV_FILL; i < NUM_AV; i++)
if (autoValve[i]) modeMask |= 1<<i;
return modeMask;
}
byte getHeatPower (byte vessel) {
return (PIDEnabled[vessel] ? (PIDOutput[vessel] / PIDCycle[vessel]) : (heatStatus[vessel] ? 100 : 0));
}