-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdualSimplexMethod.m
250 lines (223 loc) · 10.1 KB
/
dualSimplexMethod.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
% Last modified: 28.06.2017
function [optimum, utility, numberOfIterations] = dualSimplexMethod(conditionCoefficients, limits, utilityCoefficients, info, startingBase)
% This is a function that implements the dual simplex method.
% Note that any solutions where xi < 0 are disregarded.
% Input:
% conditionCoefficients - nConditions x nParameters
% A matrix with the coeffitients (usually left side) of the boundary
% condition-equations (along the lines). Note, that the equations
% must be of "<="-type.
% limits - nConditions x 1
% The limits vector of the boundary conditions (usually right side).
% utilityCoefficients - 1 x nParameters
% This is the coeffient Vector of the linear utility-function.
% Note, that this is a maximising algorithm.
% info - scalar (bool)
% Enables/Disables informative output.
% startingBase (optional) - 1 x numberOfConditions
% Provide a starting base to start optimization process from.
% If this input is omitted, the origin will be used instead.
%
% Output:
% optimum - nParameters x 1
% The optimal solution determinable by the simplex method. Note, that
% for invalid problems, the best solution found is returned.
% utility - scalar
% Value of the utility function at optimum.
% numberOfIterations - scalar
% Number of iterations till expected termination.
% ------------------------------------------------------------------------
% Example input:
% Conditions: 6 x1 + 15x2 <= 4500 [ 6 15;
% 4 x1 + 5 x2 <= 2000 -> conditionCoeffitients = 4 5;
% 20x1 + 10x2 <= 8000 20 10 ]
% | [ 4500;
% --> limits = 2000;
% 8000 ];
% Utility-function: max 16x1 + 32x2 -> utilityCoeffitients = [ 16 32 ];
% You might wish to take a look at whats happening: info = true;
% You could provide the starting base: startingBase = [ 3 4 5 ];
% ------------------------------------------------------------------------
[tableau, defaultBase] = setUpTableau(conditionCoefficients, limits, utilityCoefficients); % set up the tableau
if (nargin==5) % if given, utilize starting base
tableau = changeCompleteBase(tableau, startingBase);
base = startingBase;
else
base = defaultBase;
end
numberOfIterations = 0;
while true
numberOfIterations = numberOfIterations+1;
pivot = getNewPivot(tableau,base,info); % get new pivot element
[optimum,utility] = getParameterValues(tableau,base); % compute current parameter values and utility
if info,optionalPrint(tableau,utility,pivot);end % optional print
if isnan(pivot),return;end % if no valid pivot was found terminate
base(pivot(1))= pivot(2); % update base
tableau = changeBase(tableau, pivot); % update tableau by doing gauss elimination
end
end
function tableau = changeCompleteBase(tableau, base)
% Change all elements of the base at once.
%
% Input:
% tableau - nConditions+1 x nParameters+nConditions+2
% The current simplex tableau.
% base - 1 x nConditions
% The current base vector, containing the valid columns in the order
% they make up the identity matrix.
%
% Output:
% tableau - nConditions+1 x nParameters+nConditions+2
% The tableau corresponding to the new base.
for i = 1:length(base)
tableau = changeBase(tableau, [i base(i)]); % iterate over all elements of the base
end
end
function optionalPrint(tableau,utility,pivot)
% Print the optional iteration output.
%
% Input:
% tableau - nConditions+1 x nParameters+nConditions+2
% The current simplex tableau.
% utility - scalar
% Value of the utility function at current solution.
% pivot - 1 x 2
% The pivot element specified by [rowIndex columnIndex]
% in the tableau.
tableau
if ~isnan(pivot)
fprintf('Utility: %f \n',utility);
end
end
function [parameterValues, utility] = getParameterValues(tableau,base)
% Function that computes current parameter values by stepping through the
% base vector and checking the according row of the last column of the
% tableau.
%
% Input:
% tableau - nConditions+1 x nParameters+nConditions+2
% The current simplex tableau.
% base - 1 x nConditions
% The current base vector, containing the valid columns in the order
% they make up the identity matrix.
%
% Output:
% parameterValues - nParameters x 1
% The current best parameter values.
% utility - scalar
% Utility of current best parameter values.
numberOfParameters = size(tableau,2)-2-length(base);
parameterValues = zeros(numberOfParameters,1);
for column = 1:numberOfParameters % match the parameters to base
row = find(base==column);
if isempty(row)
parameterValues(column) = 0;
else
parameterValues(column) = tableau(row,end);
end
end
utility = -tableau(end,end);
end
function tableau = changeBase(tableau, pivot)
% Change the base by adding a new column and omitting another.
%
% Input:
% tableau - nConditions+1 x nParameters+nConditions+2
% The current simplex tableau.
% pivot - 1 x 2
% The pivot element specified by [rowIndex columnIndex]
% in the tableau.
%
% Output:
% tableau - nConditions+1 x nParameters+nConditions+2
% The tableau corresponding to the new base.
pivotRow = pivot(1);
pivotColumn = pivot(2);
tableau(pivotRow,:) = tableau(pivotRow,:)/tableau(pivotRow,pivotColumn); % gauss elimination
for i = 1:size(tableau,1)
if i ~= pivotRow
tableau(i,:) = tableau(i,:)- tableau(i,pivotColumn)*tableau(pivotRow,:);
end
end
end
function pivot = getNewPivot(tableau, base, info)
% A new pivot element is determined or the optimization is terminated.
%
% Input:
% tableau - nConditions+1 x nParameters+nConditions+2
% The current simplex tableau.
% base - 1 x nConditions
% The current base vector, containing the valid columns in the order
% they make up the identity matrix.
% info - scalar (bool)
% Enables/Disables informative output.
%
% Ouput:
% pivot - 1 x 2
% The pivot element specified by [rowIndex columnIndex]
% in the tableau.
pivot = 0;
while pivot==0 % while there are possible pivot elements
[candidateRowValue,candidateRowIndex] = min(tableau(1:end-1,end));
if (candidateRowValue<0) % check whether valid
rowIndex = candidateRowIndex;
candidateRow = tableau(rowIndex,1:end-2); % set candidate row
candidateColumnIndex = minOfTheNegatives(candidateRow,tableau(end,1:end-2),base); % set candidate column index
if isnan(candidateColumnIndex) % if not set to dummy value (note, that this is a internal copy of the tableau)
tableau(rowIndex,end)=Inf;
else
columnIndex = candidateColumnIndex;
pivot = [rowIndex columnIndex]; % else set
end
else
if info,disp('No further improvements possible:');end % if no improvement is possible, terminate (further error detection is disregarded for readability)
pivot = nan;
end
end
end
function [tableau, defaultBase] = setUpTableau(conditionCoefficients, limits, utilityCoefficients)
% Function that sets up the internal tableau representation.
%
% Inputs:
% conditionCoefficients - nConditions x nParameters
% A matrix with the coeffitients (usually left side) of the boundary
% condition-equations (along the lines).
% limits - nConditions x 1
% The limits vector of the boundary conditions (usually right side).
% utilityCoefficients - 1 x nParameters
% This is the coeffient Vector of the linear utility-function.
%
% Outputs:
% tableau - nConditions+1 x nParameters+nConditions+2
% The initial simplex tableau.
% defaultBase - 1 x nConditions
% Vector that contains column indices of current base in order.
numberOfConditions = size(conditionCoefficients,1);
numberOfParameters = size(conditionCoefficients,2);
slackAndUtility = eye(numberOfConditions+1); % set slack part of tableau
tableau = [[[conditionCoefficients;utilityCoefficients] slackAndUtility] [limits;0]]; % put together tableau
defaultBase = numberOfParameters+1:numberOfParameters+numberOfConditions; % generate default base
end
function index = minOfTheNegatives(row,costRow,base)
% Searches for columnindex of the next pivot element.
% Input:
% row - 1 x nParameters+nConditions
% The candidate row.
% costRow - 1 x nParameters+nConditions
% The cost vector of the standard form.
%
% base - 1 x nConditions
% The current base vector, containing the valid columns in the order
% they make up the identity matrix.
%
% Output:
% index - scalar
% The index corresponding to the selected pivot's column.
% Defaults to "nan" if only invalid elements are contained.
costRow(base) = nan;
indexVector = 1:length(row);
indexVector = indexVector(row<0); % get indices of negative elements
if isempty(indexVector),index = nan;return;end % if only invalid elements..
[~,I] = min(abs(costRow(indexVector)./row(indexVector))); % get relative index of selected element
index = indexVector(I); % absolute index
end