forked from pepesan/machine-learning-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_08_image_recognition_own_imagenet.py
173 lines (127 loc) · 5.67 KB
/
06_08_image_recognition_own_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import re
import sys
import tarfile
from read_image import prepare_data,read_image_array,read_single_image
import numpy as np
from six.moves import urllib
import tensorflow as tf
from sklearn import preprocessing
FLAGS = None
# pylint: disable=line-too-long
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# pylint: enable=line-too-long
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def maybe_download_and_extract():
"""Download and extract model tar file."""
dest_directory = FLAGS.model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (
filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
def convert_images_to_bottlenecks(img_dir):
maybe_download_and_extract()
path = os.path.join(FLAGS.model_dir, 'classify_image_graph_def.pb')
with tf.gfile.FastGFile(path, 'rb') as file:
graph_def = tf.GraphDef()
graph_def.ParseFromString(file.read())
tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
file_list,y_ = prepare_data(img_dir)
bottleneck_list = []
for file in file_list:
transfer_layer = sess.graph.get_tensor_by_name("pool_3:0")
print(" Creating bottleneck for : ",file)
bottleneck = tf.reshape(np.squeeze(sess.run(transfer_layer,
feed_dict={'DecodeJpeg/contents:0': tf.gfile.FastGFile(file, 'rb').read()})),[1,2048])
bottleneck_list.append(bottleneck)
bottleneck_list = tf.reshape(tf.stack(bottleneck_list),[len(file_list),2048])
return bottleneck_list,y_
def convert_single_image_to_bottlenecks(image):
path = os.path.join(FLAGS.model_dir, 'classify_image_graph_def.pb')
with tf.gfile.FastGFile(path, 'rb') as file:
graph_def = tf.GraphDef()
graph_def.ParseFromString(file.read())
tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
transfer_layer = sess.graph.get_tensor_by_name("pool_3:0")
print(" Creating bottleneck for : ",image)
bottleneck = tf.reshape(np.squeeze(sess.run(transfer_layer,
feed_dict={'DecodeJpeg/contents:0': tf.gfile.FastGFile(image, 'rb').read()})),[1,2048])
return bottleneck
def main(_):
# First custom fully connected layer
bottleneck_layer = tf.placeholder(tf.float32, shape=[None, 2048])
y_ = tf.placeholder(tf.float32, shape=[None, 2])
custom_fc_weights_1 = weight_variable([2048,1024])
custom_fc_bias_1 = bias_variable([1024])
custom_fc_layer_1 = tf.matmul(bottleneck_layer, custom_fc_weights_1) + custom_fc_bias_1
# A drop out layer
keep_prob = tf.placeholder(tf.float32)
custom_fc1_drop = tf.nn.dropout(custom_fc_layer_1, keep_prob)
# Second custom fully connected layer
custom_fc_weights_2 = weight_variable([1024,2])
custom_fc_bias_2 = bias_variable([2])
custom_fc_layer_2 = tf.matmul(custom_fc_layer_1, custom_fc_weights_2) + custom_fc_bias_2
y_conv = custom_fc_layer_2
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
bottleneck_list, y_image_label = convert_images_to_bottlenecks(FLAGS.image_dir)
le = preprocessing.LabelEncoder()
y_one_hot = tf.one_hot(le.fit_transform(y_image_label),depth=2)
x_feed = bottleneck_list
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
y_feed = sess.run(y_one_hot)
x_feed = sess.run(bottleneck_list)
for i in range(75):
if i % 10 == 0:
train_accuracy = accuracy.eval(feed_dict={
bottleneck_layer:x_feed, y_: y_feed, keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={bottleneck_layer:x_feed , y_: y_feed, keep_prob: 0.8})
predicted = tf.argmax(y_conv, 1)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_dir',
type=str,
default='model',
help="""\
Path to classify_image_graph_def.pb,
imagenet_synset_to_human_label_map.txt, and
imagenet_2012_challenge_label_map_proto.pbtxt.\
"""
)
parser.add_argument(
'--image_dir',
type=str,
default='images',
help='Absolute path to image directory.'
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)