forked from pepesan/machine-learning-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_07_image_recognitions_own_photos.py
120 lines (85 loc) · 3.51 KB
/
06_07_image_recognitions_own_photos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.python.platform import gfile
import os
import numpy as np
import argparse
import sys
from sklearn import preprocessing
from read_image import prepare_data, read_image_array, read_single_image
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def main(_):
x = tf.placeholder(tf.float32, shape=[None, 2352])
y_ = tf.placeholder(tf.float32, shape=[None, 2])
# First Convolution and Pooling Layer
conv_weight_1 = weight_variable([5, 5, 3, 31])
conv_bias_1 = bias_variable([31])
x_image = tf.reshape(x, [-1, 28, 28, 3])
conv_1_1 = conv2d(x_image, conv_weight_1)
conv_1 = tf.nn.relu(conv2d(x_image, conv_weight_1) + conv_bias_1)
pool_1 = max_pool_2x2(conv_1)
# Second Convolution and Pooling layer
conv_weight_2 = weight_variable([5, 5, 31, 64])
conv_bias_2 = bias_variable([64])
conv_2 = tf.nn.relu(conv2d(pool_1, conv_weight_2) + conv_bias_2)
pool_2 = max_pool_2x2(conv_2)
# First fully connected layer
fc_weight_1 = weight_variable([7 * 7 * 64, 1024])
fc_bias_1 = bias_variable([1024])
pool_2_flat = tf.reshape(pool_2, [-1, 7*7*64])
fc_1 = tf.nn.relu(tf.matmul(pool_2_flat, fc_weight_1) + fc_bias_1)
# A drop out layer
keep_prob = tf.placeholder(tf.float32)
custom_fc1_drop = tf.nn.dropout(fc_1, keep_prob)
# Second custom fully connected layer
fc_weights_2 = weight_variable([1024,2])
fc_bias_2 = bias_variable([2])
fc_2 = tf.matmul(fc_1, fc_weights_2) + fc_bias_2
y_conv = fc_2
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
file_list, y_image_label = prepare_data(FLAGS.image_dir)
le = preprocessing.LabelEncoder()
y_one_hot = tf.one_hot(le.fit_transform(y_image_label),depth=2)
x_feed = sess.run(read_image_array(file_list))
y_feed = sess.run(y_one_hot)
for i in range(75):
if i % 10 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:x_feed , y_: y_feed, keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x:x_feed , y_: y_feed, keep_prob: 0.8})
predicted = tf.argmax(y_conv, 1)
if FLAGS.predict_image != "":
x_single_img = sess.run(read_single_image(FLAGS.predict_image))
print('You got %s'%le.inverse_transform(sess.run(predicted,feed_dict={x:x_single_img}))[0])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--image_dir',
type=str,
default='images',
help='Path to folders of labeled images.'
)
parser.add_argument(
'--predict_image',
type=str,
default="",
help='Unknown image'
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)