forked from pepesan/machine-learning-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_06_03_tensorflow2_mobilenetv2.py
153 lines (122 loc) · 4.76 KB
/
06_06_03_tensorflow2_mobilenetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import matplotlib.pylab as plt
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow.keras import layers
classifier_url ="https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/2"
IMAGE_SHAPE = (224, 224)
classifier = tf.keras.Sequential([
hub.KerasLayer(classifier_url, input_shape=IMAGE_SHAPE+(3,))
])
import numpy as np
import PIL.Image as Image
grace_hopper = tf.keras.utils.get_file('image.jpg','https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg')
grace_hopper = Image.open(grace_hopper).resize(IMAGE_SHAPE)
grace_hopper = np.array(grace_hopper)/255.0
print(grace_hopper.shape)
result = classifier.predict(grace_hopper[np.newaxis, ...])
print(result.shape)
predicted_class = np.argmax(result[0], axis=-1)
print(predicted_class)
labels_path = tf.keras.utils.get_file('ImageNetLabels.txt','https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt')
imagenet_labels = np.array(open(labels_path).read().splitlines())
plt.imshow(grace_hopper)
plt.axis('off')
predicted_class_name = imagenet_labels[predicted_class]
_ = plt.title("Prediction: " + predicted_class_name.title())
plt.show()
data_root = tf.keras.utils.get_file(
'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',
untar=True)
image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1/255)
image_data = image_generator.flow_from_directory(str(data_root), target_size=IMAGE_SHAPE)
for image_batch, label_batch in image_data:
print("Image batch shape: ", image_batch.shape)
print("Label batch shape: ", label_batch.shape)
break
result_batch = classifier.predict(image_batch)
print(result_batch.shape)
predicted_class_names = imagenet_labels[np.argmax(result_batch, axis=-1)]
print(predicted_class_names)
plt.figure(figsize=(10,9))
plt.subplots_adjust(hspace=0.5)
for n in range(30):
plt.subplot(6, 5, n+1)
plt.imshow(image_batch[n])
plt.title(predicted_class_names[n])
plt.axis('off')
_ = plt.suptitle("ImageNet predictions")
plt.show()
feature_extractor_url = "https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/2"
feature_extractor_layer = hub.KerasLayer(feature_extractor_url,
input_shape=(224,224,3))
feature_batch = feature_extractor_layer(image_batch)
print(feature_batch.shape)
feature_extractor_layer.trainable = False
model = tf.keras.Sequential([
feature_extractor_layer,
layers.Dense(image_data.num_classes)
])
model.summary()
predictions = model(image_batch)
print(predictions.shape)
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
metrics=['acc'])
class CollectBatchStats(tf.keras.callbacks.Callback):
def __init__(self):
self.batch_losses = []
self.batch_acc = []
def on_train_batch_end(self, batch, logs=None):
self.batch_losses.append(logs['loss'])
self.batch_acc.append(logs['acc'])
self.model.reset_metrics()
steps_per_epoch = np.ceil(image_data.samples/image_data.batch_size)
batch_stats_callback = CollectBatchStats()
import os
import datetime
log_dir = os.path.join('logs', 'fit', datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))
print(log_dir)
os.makedirs(log_dir, exist_ok=True)
tensorboard_callback = tf.keras.callbacks.TensorBoard(histogram_freq=1, log_dir=log_dir)
history = model.fit(image_data, epochs=100,
steps_per_epoch=steps_per_epoch,
callbacks=[batch_stats_callback, tensorboard_callback])
plt.figure()
plt.ylabel("Loss")
plt.xlabel("Training Steps")
plt.ylim([0,2])
plt.plot(batch_stats_callback.batch_losses)
plt.show()
plt.figure()
plt.ylabel("Accuracy")
plt.xlabel("Training Steps")
plt.ylim([0,1])
plt.plot(batch_stats_callback.batch_acc)
plt.show()
class_names = sorted(image_data.class_indices.items(), key=lambda pair:pair[1])
class_names = np.array([key.title() for key, value in class_names])
print(class_names)
predicted_batch = model.predict(image_batch)
predicted_id = np.argmax(predicted_batch, axis=-1)
predicted_label_batch = class_names[predicted_id]
label_id = np.argmax(label_batch, axis=-1)
plt.figure(figsize=(10,9))
plt.subplots_adjust(hspace=0.5)
for n in range(30):
plt.subplot(6,5,n+1)
plt.imshow(image_batch[n])
color = "green" if predicted_id[n] == label_id[n] else "red"
plt.title(predicted_label_batch[n].title(), color=color)
plt.axis('off')
_ = plt.suptitle("Model predictions (green: correct, red: incorrect)")
plt.show()
import time
t = time.time()
export_path = "./modelos"
model.save(export_path, save_format='tf')
print(export_path)
reloaded = tf.keras.models.load_model(export_path)
result_batch = model.predict(image_batch)
reloaded_result_batch = reloaded.predict(image_batch)
abs(reloaded_result_batch - result_batch).max()