forked from pepesan/machine-learning-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_02_01_tflearn_basics.py
69 lines (55 loc) · 2.17 KB
/
06_02_01_tflearn_basics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# -*- coding: utf-8 -*-
import numpy as np
import tflearn
# Download the Titanic dataset
# from tflearn.datasets import titanic
# titanic.download_dataset('./csv/titanic_dataset.csv')
# Load CSV file, indicate that the first column represents labels
from tflearn.data_utils import load_csv
data, labels = load_csv('./csv/titanic_dataset.csv', target_column=0,
categorical_labels=True, n_classes=2)
# Preprocessing function
def preprocess(data, columns_to_ignore):
# Sort by descending id and delete columns
for id in sorted(columns_to_ignore, reverse=True):
[r.pop(id) for r in data]
for i in range(len(data)):
# Converting 'sex' field to float (id is 1 after removing labels column)
data[i][1] = 1. if data[i][1] == 'female' else 0.
return np.array(data, dtype=np.float32)
# Ignore 'name' and 'ticket' columns (id 1 & 6 of data array)
to_ignore = [1, 6]
# Preprocess data
data = preprocess(data, to_ignore)
# Build neural network
net = tflearn.input_data(shape=[None, 6])
net = tflearn.fully_connected(net, 3, activation="relu")
net = tflearn.fully_connected(net, 2, activation="relu")
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net)
import os
import datetime
log_dir = os.path.join('logs', 'fit', datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))
print(log_dir)
os.makedirs(log_dir, exist_ok=True)
# tensorboard --logdir='logs'
# Define model
model = tflearn.DNN(
net, tensorboard_verbose=1, tensorboard_dir=log_dir)
# Start training (apply gradient descent algorithm)
model.fit(
data, labels, n_epoch=200, batch_size=1000,
show_metric=True)
# Let's create some data for DiCaprio and Winslet
dicaprio = [3, 'Jack Dawson', 'male', 19, 0, 0, 'N/A', 5.0000]
winslet = [1, 'Rose DeWitt Bukater', 'female', 17, 1, 2, 'N/A', 100.0000]
# Preprocess data
dicaprio, winslet = preprocess([dicaprio, winslet], to_ignore)
# Predict surviving chances (class 1 results)
pred = model.predict([dicaprio, winslet])
print("DiCaprio Surviving Rate:", pred[0][1])
print("Winslet Surviving Rate:", pred[1][1])
location = "./modelos/titanic.model"
model.save(location)
model.load(location)
print(model.session)