diff --git a/n3fit/src/n3fit/hyper_optimization/rewards.py b/n3fit/src/n3fit/hyper_optimization/rewards.py index d1bb9a49de..6a0a85e083 100644 --- a/n3fit/src/n3fit/hyper_optimization/rewards.py +++ b/n3fit/src/n3fit/hyper_optimization/rewards.py @@ -72,7 +72,7 @@ def _average_best(fold_losses: np.ndarray, proportion: float = 0.05, axis: int = return _average(best_losses, axis=axis) -def _average(fold_losses: np.ndarray, axis: int = 0) -> float: +def _average(fold_losses: np.ndarray, axis: int = 0, **kwargs) -> float: """ Compute the average of the input array along the specified axis. @@ -90,7 +90,7 @@ def _average(fold_losses: np.ndarray, axis: int = 0) -> float: return np.average(fold_losses, axis=axis).item() -def _best_worst(fold_losses: np.ndarray, axis: int = 0) -> float: +def _best_worst(fold_losses: np.ndarray, axis: int = 0, **kwargs) -> float: """ Compute the maximum value of the input array along the specified axis. @@ -108,7 +108,7 @@ def _best_worst(fold_losses: np.ndarray, axis: int = 0) -> float: return np.max(fold_losses, axis=axis).item() -def _std(fold_losses: np.ndarray, axis: int = 0) -> float: +def _std(fold_losses: np.ndarray, axis: int = 0, **kwargs) -> float: """ Compute the standard deviation of the input array along the specified axis. @@ -265,9 +265,14 @@ def compute_loss( if self.loss_type == "chi2": # calculate statistics of chi2 over replicas for a given k-fold_statistic - ### Experiment: - # Use the validation loss as the loss - # summed with how far from 2 are we for the kfold + # Construct the final loss as a sum of + # 1. The validation chi2 + # 2. The distance to 2 for the kfold chi2 + # If a proportion allow as a keyword argument, use 80% and 10% + # as a proxy of + # "80% of the replicas should be good, but only a small % has to cover the folds" + # The values of 80% and 10% are completely empirical and should be investigated further + validation_loss_average = self.reduce_over_replicas(validation_loss, proportion=0.8) kfold_loss_average = self.reduce_over_replicas(kfold_loss, proportion=0.1) loss = validation_loss_average + (max(kfold_loss_average, 2.0) - 2.0) diff --git a/n3fit/src/n3fit/tests/test_hyperopt.py b/n3fit/src/n3fit/tests/test_hyperopt.py index 274394b25a..68bfae960c 100644 --- a/n3fit/src/n3fit/tests/test_hyperopt.py +++ b/n3fit/src/n3fit/tests/test_hyperopt.py @@ -79,7 +79,11 @@ def test_compute_per_fold_loss(loss_type, replica_statistic, expected_per_fold_l # calculate statistic loss for one specific fold pdf_object = N3PDF(pdf_model.split_replicas()) predicted_per_fold_loss = loss.compute_loss( - penalties, experimental_loss, pdf_object, experimental_data + penalties, + kfold_loss=experimental_loss, + validation_loss=experimental_loss, + pdf_object=pdf_object, + experimental_data=experimental_data, ) # Assert