-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdf9.py
386 lines (317 loc) · 11.6 KB
/
pdf9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""Fit of parton distributions functions (PDFs)
Like pdf8, but only with linear data"""
import warnings
import lsqfitgp as lgp
import numpy as np
from jax import numpy as jnp
from scipy import linalg, interpolate
from matplotlib import pyplot as plt
import gvar
np.random.seed(20220807)
# do not use np.random.default_rng because gvar uses the old numpy gen
warnings.filterwarnings('ignore', r'total derivative orders \(\d+, \d+\) greater than kernel minimum \(\d+, \d+\)')
#### DEFINITIONS ####
ndata = 3000 # number of datapoints
# 500 is too low to get a good fit for the hyperparameters
# 1000 is good w/o passing the pre-decomposed data error, w/ has problems
# 2000 is fine w/ pre-decomposition
# 4000 has difficulties moving away from the starting point
qtopm = np.array([
# d, db, u, ub, s, sb, c, cb
[ 1, 1, 0, 0, 0, 0, 0, 0], # d+ = d + dbar
[ 1, -1, 0, 0, 0, 0, 0, 0], # d- = d - dbar
[ 0, 0, 1, 1, 0, 0, 0, 0], # u+ = etc.
[ 0, 0, 1, -1, 0, 0, 0, 0], # u-
[ 0, 0, 0, 0, 1, 1, 0, 0], # s+
[ 0, 0, 0, 0, 1, -1, 0, 0], # s-
[ 0, 0, 0, 0, 0, 0, 1, 1], # c+
[ 0, 0, 0, 0, 0, 0, 1, -1], # c-
])
pmtoev = np.array([
# d+, d-, u+, u-, s+, s-, c+, c-
[ 1, 0, 1, 0, 1, 0, 1, 0], # Sigma = sum_q q+
[ 0, 1, 0, 1, 0, 1, 0, 1], # V = sum_q q-
[ 0, -1, 0, 1, 0, 0, 0, 0], # V3 = u- - d-
[ 0, 1, 0, 1, 0, -2, 0, 0], # V8 = u- + d- - 2s-
[ 0, 1, 0, 1, 0, 1, 0, -3], # V15 = u- + d- + s- - 3c-
[ -1, 0, 1, 0, 0, 0, 0, 0], # T3 = u+ - d+
[ 1, 0, 1, 0, -2, 0, 0, 0], # T8 = u+ + d+ - 2s+
[ 1, 0, 1, 0, 1, 0, -3, 0], # T15 = u+ + d+ + s+ - 3c+
])
qnames = ['d' , 'dbar', 'u' , 'ubar', 's' , 'sbar', 'c' , 'cbar']
pmnames = ['d+', 'd-' , 'u+', 'u-' , 's+', 's-' , 'c+', 'c-' ]
evnames = ['Sigma', 'V', 'V3', 'V8', 'V15', 'T3', 'T8', 'T15']
pnames = evnames + ['g']
tpnames = ['xSigma'] + evnames[1:] + ['xg']
nflav = len(pnames)
# grid used for DGLAP evolution
grid = np.array([
1.9999999999999954e-07, # start logspace
3.034304765867952e-07,
4.6035014748963906e-07,
6.984208530700364e-07,
1.0596094959101024e-06,
1.607585498470808e-06,
2.438943292891682e-06,
3.7002272069854957e-06,
5.613757716930151e-06,
8.516806677573355e-06,
1.292101569074731e-05,
1.9602505002391748e-05,
2.97384953722449e-05,
4.511438394964044e-05,
6.843744918967896e-05,
0.00010381172986576898,
0.00015745605600841445,
0.00023878782918561914,
0.00036205449638139736,
0.0005487795323670796,
0.0008314068836488144,
0.0012586797144272762,
0.0019034634022867384,
0.0028738675812817515,
0.004328500638820811,
0.006496206194633799,
0.009699159574043398,
0.014375068581090129,
0.02108918668378717,
0.030521584007828916,
0.04341491741702269,
0.060480028754447364,
0.08228122126204893,
0.10914375746330703, # end logspace, start linspace
0.14112080644440345,
0.17802566042569432,
0.2195041265003886,
0.2651137041582823,
0.31438740076927585,
0.3668753186482242,
0.4221667753589648,
0.4798989029610255,
0.5397572337880445,
0.601472197967335,
0.6648139482473823,
0.7295868442414312,
0.7956242522922756,
0.8627839323906108,
0.9309440808717544,
1, # end linspace
])
# grid used for data
datagrid = grid[15:-1] # exclude 1 since f(1) = 0 and zero errors upset the fit
nx = len(datagrid)
# grid used for plot
gridinterp = interpolate.interp1d(np.linspace(0, 1, len(grid)), grid)
plotgrid = gridinterp(np.linspace(0, 1, 200))
# generated linear map PDF(grid) -> data
i = np.arange(ndata)[:, None, None]
j = np.arange(nx)[None, None, :]
intensity_diagonal = np.exp(-1/2 * (i / ndata - j / nx) ** 2 * ndata * nx)
intensity_flat = 1
intensity = 0.9 * intensity_diagonal + 0.1 * intensity_flat
intensity = np.broadcast_to(intensity, (ndata, nflav, nx))
dof = 3
M = intensity * np.random.chisquare(dof, intensity.shape) / dof
#### GAUSSIAN PROCESS ####
# Ti ~ GP (i = 3, 8, 15)
#
# fi ~ GP with sdev ~ x to compensate the scale ~ 1/x (i = 3, 8, 15)
# Vi = fi'
# f(1) - f(0) = 3
# f3(1) - f3(0) = 1
# f8(1) - f8(0) = 3
# f15(1) - f15(0) = 3
#
# f1 ~ GP (without scale compensation)
# tf1(x) = x^(a+1)/(a+2) f1(x) <--- scale comp. is x^(a+1) instead of x^a,
# to avoid doing x^a with a < 0 in x = 0
# Sigma(x) = tf1'(x) / x (such that x Sigma(x) ~ x^a)
# the same with f2, tf2, g
# tf12 = tf1 + tf2
# tf12(0) - tf12(1) = 1
#
# [Sigma, g, V*, T*](1) = 0
# transformation from evolution to flavor basis
evtoq = linalg.inv(pmtoev @ qtopm)
hyperprior = {
# correlation length of the prior at x = 1
'log(scale)' : np.log(gvar.gvar(0.5, 0.5)),
# exponents of x Sigma(x) and x g(x) for x -> 0
'U(alpha_Sigma)': gvar.BufferDict.uniform('U', -0.5, 0.5),
'U(alpha_g)' : gvar.BufferDict.uniform('U', -0.5, 0.5),
}
def makegp(hp):
gp = lgp.GP(checkpos=False, checksym=False, solver='chol', eps=1e-10)
eps = grid[0]
scalefun = lambda x: hp['scale'] * (x + eps) # = 1 / log'(x)
kernel = lgp.Gibbs(scalefun=scalefun)
kernel_prim = kernel.rescale(scalefun, scalefun)
# define Ts and Vs
for suffix in ['', '3', '8', '15']:
if suffix != '':
gp.addproc(kernel, 'T' + suffix)
gp.addproc(kernel_prim, 'f' + suffix)
gp.addprocderiv(1, 'V' + suffix, 'f' + suffix)
# define xSigma
gp.addproc(kernel, 'f1')
a = hp['alpha_Sigma']
gp.addprocrescale(lambda x: x ** (a + 1) / (a + 2), 'tf1', 'f1')
gp.addprocderiv(1, 'xSigma', 'tf1')
# define xg
gp.addproc(kernel, 'f2')
b = hp['alpha_g']
gp.addprocrescale(lambda x: x ** (b + 1) / (b + 2), 'tf2', 'f2')
gp.addprocderiv(1, 'xg', 'tf2')
# define primitive of xSigma + xg
gp.addproctransf({'tf1': 1, 'tf2': 1}, 'tf12')
# definite integrals
for proc in ['tf12', 'f', 'f3', 'f8', 'f15']:
gp.addx([0, 1], proc + '-endpoints', proc=proc)
gp.addlintransf(lambda x: x[1] - x[0], [proc + '-endpoints'], proc + '-diff')
# right endpoint
for proc in tpnames:
gp.addx(1, f'{proc}(1)', proc=proc)
# define a matrix of PDF values over the x grid
for proc in tpnames:
gp.addx(datagrid, proc + '-datagrid', proc=proc)
gp.addlintransf(lambda *args: jnp.stack(args), [proc + '-datagrid' for proc in tpnames], 'datagrid')
# linear data
gp.addtransf({'datagrid': M}, 'datalatent', axes=2)
# define flavor basis PDFs
gp.addprocrescale(lambda x: 1 / x, 'Sigma', 'xSigma')
gp.addprocrescale(lambda x: 1 / x, 'g', 'xg')
for qi, qproc in enumerate(qnames):
gp.addproctransf({
eproc: evtoq[qi, ei]
for ei, eproc in enumerate(evnames)
}, qproc)
# define a matrix of PDF values over the plot grid
for proc in tpnames:
gp.addx(plotgrid, proc + '-plotgrid', proc=proc)
gp.addlintransf(lambda *args: jnp.stack(args), [proc + '-plotgrid' for proc in tpnames], 'plotgrid')
return gp
constraints = {
'tf12-diff': 1,
'f-diff' : 3,
'f3-diff' : 1,
'f8-diff' : 3,
'f15-diff' : 3,
'xSigma(1)': 0,
'V(1)' : 0,
'V3(1)' : 0,
'V8(1)' : 0,
'V15(1)' : 0,
'T3(1)' : 0,
'T8(1)' : 0,
'T15(1)' : 0,
'xg(1)' : 0,
}
#### FAKE DATA ####
truehp = gvar.sample(hyperprior)
# rescale M to avoid having data depend almost uniquely on divergent functions
M[:, 0, :] /= datagrid ** truehp['alpha_Sigma']
M[:, -1, :] /= datagrid ** truehp['alpha_g']
truegp = makegp(truehp)
trueprior, trueprior_cov = truegp.predfromdata(constraints, ['datalatent', 'plotgrid'], raw=True)
# no gvars because it's slow with >1000 datapoints
truedata = lgp.sample(trueprior, trueprior_cov, eps=1e-10)
v = truedata['datalatent']
dataerr = np.full_like(v, 0.1 * (np.max(v) - np.min(v)))
data = gvar.make_fake_data(gvar.gvar(v, dataerr))
dataerrcov = gvar.evalcov(data)
datamean = gvar.mean(data)
def check_constraints(y):
# integrate approximately with trapezoid rule
integ = np.sum((y[:, 1:] + y[:, :-1]) / 2 * np.diff(plotgrid), 1)
print(f'int dx x (Sigma(x) + g(x)) = {integ[0] + integ[-1]:.2g}')
for i in range(1, 5):
print(f'int dx {tpnames[i]}(x) = {integ[i]:.2g}')
for i, name in enumerate(tpnames):
print(f'{name}(1) = {y[i, -1]:.2g}')
print('\ncheck constraints in fake data:')
check_constraints(truedata['plotgrid'])
#### FIT ####
information = gvar.gvar(dict(datalatent=data, **constraints))
# infcov = gvar.evalcov(information)
infcov_flat = gvar.evalcov(information.buf)
infcovdec = lgp.GP.decompose(infcov_flat, 'eigcut-')
# use eigcut- to cut away the 0 errors of the constraints
fitkw = dict(
raises=False,
jit=True,
method='hessian',
verbosity=3,
# initial=truehp,
)
fit = lgp.empbayes_fit(hyperprior, makegp, (information, infcovdec), **fitkw)
print('\nhyperparameters (true, fitted, prior):')
hyperprior = gvar.BufferDict(hyperprior)
for k in fit.p.all_keys():
print(f'{k:15}{truehp[k]:>#10.2g}{str(fit.p[k]):>15}{str(hyperprior[k]):>15}')
gp = makegp(gvar.mean(fit.p))
pred, predcov = gp.predfromdata(information, ['datalatent', 'plotgrid'], raw=True)
# use raw because with gvars it becomes slow above ~1000 datapoints
print('\ncheck constraints in fit:')
check_constraints(pred['plotgrid'])
#### PLOT RESULTS ####
fig, axs = plt.subplots(2, 2, num='pdf9', clear=True, figsize=[13, 8])
axs[0, 0].set_title('PDFs')
axs[1, 0].set_title('PDFs')
axs[0, 1].set_title('PDFs')
axs[1, 1].set_title('Data')
for i in range(nflav):
label = tpnames[i]
if label in ['xSigma', 'xg', 'V']:
ax = axs[0, 0]
elif label.startswith('T'):
ax = axs[1, 0]
else:
ax = axs[0, 1]
if label.startswith('x'):
expon = fit.p['alpha_' + label[1:]]
label += f' $\\sim x^{{{expon}}}$'
ypdf = pred['plotgrid'][i, :]
ypdfcov = predcov['plotgrid', 'plotgrid'][i, :, i, :]
m = ypdf
s = np.sqrt(np.diag(ypdfcov))
ax.fill_between(plotgrid, m - s, m + s, label=label, alpha=0.4, facecolor=f'C{i}')
ax.plot(plotgrid, truedata['plotgrid'][i], color=f'C{i}')
ax.set_xscale('log')
for ax in axs.flat[:3]:
ax.axvline(datagrid[0], linestyle='--', color='black')
axs[0, 0].set_yscale('symlog', linthresh=10, subs=[2, 3, 4, 5, 6, 7, 8, 9])
ax = axs[1, 1]
zero = truedata['datalatent']
x = np.arange(len(zero))
# decimate the data to be displayed
sl = np.s_[::len(x) // 250 + 1]
zero = zero[sl]
x = x[sl]
ax.plot(x, truedata['datalatent'][sl] - zero, drawstyle='steps-mid', color='black', label='truth')
d = datamean[sl] - zero
ax.errorbar(x, d, dataerr[sl], color='black', linestyle='', linewidth=1, capsize=2, label='data')
d = pred['datalatent'][sl] - zero
dcov = predcov['datalatent', 'datalatent'][sl, sl]
m = d
s = np.sqrt(np.diag(dcov))
ax.fill_between(x, m - s, m + s, step='mid', color='gray', alpha=0.8, label='fit', zorder=10)
for ax in axs.flat:
ax.legend()
fig.tight_layout()
fig.show()
fig, ax = plt.subplots(clear=True, num='pdf9-parameters')
ax.set_title('Hyperparameters (transformed)')
x = list(range(len(hyperprior)))
keys = list(hyperprior.keys())
yprior = list(hyperprior.values())
ypost = list(fit.p.values())
ytrue = list(truehp.values())
ax.set_xticks(x)
ax.set_xticklabels(keys)
m = gvar.mean(yprior)
s = gvar.sdev(yprior)
ax.fill_between(x, m - s, m + s, label='prior', color='lightgray')
ax.errorbar(x, gvar.mean(ypost), gvar.sdev(ypost), label='posterior', color='black', linestyle='', capsize=3, marker='.')
ax.plot(ytrue, drawstyle='steps-mid', label='true value', color='red')
ax.legend()
fig.show()