-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_nerf_helpers.py
227 lines (182 loc) · 7.69 KB
/
run_nerf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm, trange
import os
import imageio
# Misc
img2mse = lambda x, y : torch.mean((x - y) ** 2)
img2se = lambda x, y : (x - y) ** 2
mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.])) # logab = logcb / logca
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
to8b_tensor = lambda x : (255*torch.clip(x,0,1)).type(torch.int)
def imread(f):
if f.endswith('png'):
return imageio.imread(f, ignoregamma=True)
else:
return imageio.imread(f)
def load_imgs(path):
imgfiles = [os.path.join(path, f) for f in sorted(os.listdir(path)) if
f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')]
imgs = [imread(f)[..., :3] / 255. for f in imgfiles]
imgs = np.stack(imgs, -1)
imgs = np.moveaxis(imgs, -1, 0).astype(np.float32)
imgs = imgs.astype(np.float32)
imgs = torch.tensor(imgs).cuda()
return imgs
# Ray helpers
def get_rays(H, W, K, c2w):
# print(H, W)
# print(K)
# print(c2w)
i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij'
# print(i)
# print(j)
# assert False
i = i.t()
j = j.t()
dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1)
# print(dirs)
# assert False
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3,-1].expand(rays_d.shape)
return rays_o, rays_d
def ndc_rays(H, W, focal, near, rays_o, rays_d):
# Shift ray origins to near plane
t = -(near + rays_o[...,2]) / rays_d[...,2]
rays_o = rays_o + t[...,None] * rays_d
# Projection
o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2]
o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2]
o2 = 1. + 2. * near / rays_o[...,2]
d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2])
d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2])
d2 = -2. * near / rays_o[...,2]
rays_o = torch.stack([o0,o1,o2], -1)
rays_d = torch.stack([d0,d1,d2], -1)
return rays_o, rays_d
# Hierarchical sampling (section 5.2)
def sample_pdf(bins, weights, N_samples, det=False, pytest=False):
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[...,:1]), cdf], -1) # (batch, len(bins))
# Take uniform samples
if det:
u = torch.linspace(0., 1., steps=N_samples)
u = u.expand(list(cdf.shape[:-1]) + [N_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [N_samples])
# Pytest, overwrite u with numpy's fixed random numbers
if pytest:
np.random.seed(0)
new_shape = list(cdf.shape[:-1]) + [N_samples]
if det:
u = np.linspace(0., 1., N_samples)
u = np.broadcast_to(u, new_shape)
else:
u = np.random.rand(*new_shape)
u = torch.Tensor(u)
# Invert CDF
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds-1), inds-1)
above = torch.min((cdf.shape[-1]-1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
# cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
# bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[...,1]-cdf_g[...,0])
denom = torch.where(denom<1e-5, torch.ones_like(denom), denom)
t = (u-cdf_g[...,0])/denom
samples = bins_g[...,0] + t * (bins_g[...,1]-bins_g[...,0])
return samples
def render_video_test(i_, graph, render_poses, H, W, K, args):
rgbs = []
disps = []
# t = time.time()
for i, pose in enumerate(tqdm(render_poses)):
# print(i, time.time() - t)
# t = time.time()
pose = pose[None, :3, :4]
ret = graph.render_video(i_, pose[:3, :4], H, W, K, args)
rgbs.append(ret['rgb_map'].cpu().numpy())
disps.append(ret['disp_map'].cpu().numpy())
if i==0:
print(ret['rgb_map'].shape, ret['disp_map'].shape)
rgbs = np.stack(rgbs, 0)
disps = np.stack(disps, 0)
return rgbs, disps
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
def render_image_test(i, graph, render_poses, H, W, K, args, img_dir, need_depth=False):
# if novel_view:
# img_dir = os.path.join(args.basedir, args.expname, 'img_novel_{:06d}'.format(i))
# else:
# img_dir = os.path.join(args.basedir, args.expname, f'img_test_{name}_{i}')
os.makedirs(img_dir, exist_ok=True)
imgs = []
for j, pose in enumerate(tqdm(render_poses)):
# print(i, time.time() - t)
# t = time.time()
pose = pose[None, :3, :4]
ret = graph.render_video(i, pose[:3, :4], H, W, K, args)
imgs.append(ret['rgb_map'])
rgbs = ret['rgb_map'].cpu().numpy()
rgb8 = to8b(rgbs)
imageio.imwrite(os.path.join(img_dir, 'rgb_{:03d}.png'.format(j)), rgb8)
if need_depth:
depths = ret['disp_map'].cpu().numpy()
depths_ = depths/np.max(depths)
depth8 = to8b(depths_)
imageio.imwrite(os.path.join(img_dir, 'depth_{:03d}.png'.format(j)), depth8)
imgs = torch.stack(imgs, 0)
return imgs
def init_weights(linear):
# use Xavier init instead of Kaiming init
torch.nn.init.kaiming_normal_(linear.weight)
torch.nn.init.zeros_(linear.bias)
def init_nerf(nerf):
for linear_pt in nerf.pts_linears:
init_weights(linear_pt)
for linear_view in nerf.views_linears:
init_weights(linear_view)
init_weights(nerf.feature_linear)
init_weights(nerf.alpha_linear)
init_weights(nerf.rgb_linear)
# Ray helpers only get specific rays
def get_specific_rays(i, j, K, c2w):
# i, j = torch.meshgrid(torch.linspace(0, W - 1, W),
# torch.linspace(0, H - 1, H)) # pytorch's meshgrid has indexing='ij'
# i = i.t()
# j = j.t()
dirs = torch.stack([(i - K[0][2]) / K[0][0], -(j - K[1][2]) / K[1][1], -torch.ones_like(i)], -1)
# print(c2w.shape)
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[..., :3, :3], -1)
# dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[..., :3, -1]
return rays_o, rays_d
def save_render_pose(poses, path):
poses_np = poses.cpu().detach().numpy()
N = poses_np.shape[0]
bottom = np.reshape([0., 0., 0., 1.], [1, 4])
bottom_all = np.expand_dims(bottom, 0).repeat(N, axis=0)
poses_Rt = np.concatenate([poses_np, bottom_all], 1)
poses_txt = os.path.join(path, 'poses_render.txt')
for j in range(poses_np.shape[0]):
poses_flat = poses_Rt[j].reshape(16, 1).squeeze()
for k in range(16):
with open(poses_txt, 'a') as outfile:
if k == 0:
outfile.write(f"pose{j} ")
if k != 15:
outfile.write(f"{poses_flat[k]} ")
if k == 15:
outfile.write(f"{poses_flat[k]}\n")