-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathexp_test_OSCD.py
119 lines (86 loc) · 3.97 KB
/
exp_test_OSCD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# -*- coding: utf-8 -*-
"""
@author: ZHANG Min, Wuhan University
@email: [email protected]
"""
import numpy as np
from PIL import Image
import os
import exp_test
import helper
import cv2
import argparse
def test_fdcnn(threshold):
# load dataset
base_dir = r"datasets\Onera Satellite Change Detection dataset - Images";
train_set_path = os.path.join(base_dir, 'test.txt');
with open(train_set_path, 'r') as f:
train_imgs = f.read();
name_list = train_imgs.split(',');
# parameters
dim = 224;
mean_rgb = np.array((101.438, 104.358, 93.970), dtype=np.float32);
[model_def, model_weights] = helper.get_fdcnn();
net = exp_test.caffe_net(model_def, model_weights);
for image_seleted in name_list:
print 'Current image ->', image_seleted
group_dir = os.path.join(base_dir, 'Test', image_seleted, "pair");
data_t1_path = os.path.join(group_dir, "img1.png")
data_t2_path = os.path.join(group_dir, "img2.png")
out_dir = 'output/OSCD/Test';
exp_test.make_dir(out_dir);
t1 = Image.open(data_t1_path);
t1 = np.asarray(t1, dtype=np.float32);
t2 = Image.open(data_t2_path);
t2 = np.asarray(t2, dtype=np.float32);
for i in range(3):
t2[:, :, i] = exp_test.hist_match(t2[:, :, i], t1[:, :, i]);
[h, w, c] = t2.shape;
# Spatial resolution: 10m -> 5m, [AID dataset: 0.5m-8m]
t1 = cv2.resize(t1, (2 * w, 2 * h), interpolation=cv2.INTER_LINEAR);
t2 = cv2.resize(t2, (2 * w, 2 * h), interpolation=cv2.INTER_LINEAR);
[h, w, c] = t2.shape;
data_t12 = np.abs(t1 - t2);
maxV = np.max(data_t12);
data_t12 = data_t12 / maxV;
# Considering the edge
bf = 20;
write_dim = dim - 2 * bf;
h_batch = int(h + write_dim - 1) / write_dim;
w_batch = int(w + write_dim - 1) / write_dim;
new_size = (w_batch * write_dim + 2 * bf, h_batch * write_dim + 2 * bf);
im1 = exp_test.pad_edge(t1, new_size[0], new_size[1], bf);
im2 = exp_test.pad_edge(t2, new_size[0], new_size[1], bf);
im12 = exp_test.pad_edge(data_t12, new_size[0], new_size[1], bf);
cmm = np.zeros((new_size[1], new_size[0]));
for i in range(h_batch):
for j in range(w_batch):
offset_x = j * write_dim;
offset_y = i * write_dim;
t1_b = im1[offset_y:offset_y + dim, offset_x:offset_x + dim];
t2_b = im2[offset_y:offset_y + dim, offset_x:offset_x + dim];
t12_b = im12[offset_y:offset_y + dim, offset_x:offset_x + dim];
cmm_b = exp_test.block_fdcnn(net, t1_b, t2_b, t12_b, mean_rgb);
cmm_b = cmm_b.reshape([dim, dim]);
cmm[offset_y + bf:offset_y + bf + write_dim,
offset_x + bf:offset_x + bf + write_dim] = cmm_b[bf:bf + write_dim, bf:bf + write_dim];
cmm = exp_test.un_pad_edge(cmm, w, h, bf);
cmm = cv2.resize(cmm, (w / 2, h / 2), interpolation=cv2.INTER_NEAREST);
maxV = np.max(cmm);
cmm = cmm * 1.0 / maxV;
# You can still improve the accuracy by setting thresholds for
# different image pairs
bm = cmm > threshold;
bm = np.asarray(bm, dtype=np.uint8);
bm[bm > 0] = 1;
bm[bm == 0] = 0;
save_name = image_seleted.replace('\\', '_');
exp_test.save_im(bm, os.path.join(out_dir, save_name + '_BM.tif'));
exp_test.save_im(cmm, os.path.join(out_dir, save_name + '_CMM.tif'))
print 'The results need be uploaded to the IEEE GRSS DASE websitefor evaluation.'
if __name__ == '__main__':
parser=argparse.ArgumentParser(description="Test the FDCNN on OSCD datasets")
parser.add_argument('--threshold','-t', default = 0.98,type=float, required=True, help='between 0 to 1')
args=parser.parse_args()
test_fdcnn(args.threshold)
print 'Done!'