-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmil_train.py
186 lines (153 loc) · 5.88 KB
/
mil_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: utf-8 -*-
"""
@author: ZHANG Min, Wuhan University
@email: [email protected]
"""
from __future__ import print_function
import torch
import torch.utils.data as data_utils
import torch.optim as optim
from torch.autograd import Variable
from mil_model import Attention
from mil_dataloader import CDBags
import time
import accuracy as acc
import argparse
def test(model, test_loader, args):
model.eval()
gts = []
pred = []
step = 0
all_size = len(test_loader)
time_start_all = time.time()
time_start = time.time()
for batch_idx, (data1, data2, label, file_name) in enumerate(test_loader):
step = step + 1
gts.append(label[0].numpy()[0])
data_v_1 = Variable(data1)
data_v_2 = Variable(data2)
if not args.no_gpu:
data_v_1 = data_v_1.cuda()
data_v_2 = data_v_2.cuda()
pred_prob, pred_label, attention_weights = model.eval_img(
data_v_1, data_v_2)
pred.append(pred_label[0])
if step % args.disp == 0:
time_end = time.time()
print('Test step:{}/{}, Time {:.2f}'.format(
step, all_size, time_end - time_start))
time_start = time.time()
time_end_all = time.time()
print('All time {:.2f}'.format(time_end_all - time_start_all))
hist = acc.hist(gts, pred)
acc.evaluation_print(hist)
def train(model, args):
args_gpu = not args.no_gpu and torch.cuda.is_available()
if args_gpu:
torch.cuda.manual_seed(args.seed)
print('Using GPU')
else:
torch.manual_seed(args.seed)
print('Using CPU')
loader_kwargs = {'num_workers': 1, 'pin_memory': True} if args_gpu else {}
print('Load training dataset')
train_loader = data_utils.DataLoader(CDBags(data_dir=args.data_dir,
seed=args.seed,
train=True),
batch_size=1,
shuffle=True,
**loader_kwargs)
test_loader = data_utils.DataLoader(CDBags(data_dir=args.data_dir,
seed=args.seed,
train=False),
batch_size=1,
shuffle=False,
**loader_kwargs)
print('Init model')
if args_gpu:
model.cuda()
# model.print_size()
#optimizer = optim.Adam(
# model.parameters(), lr=args.lr, betas=(
# 0.9, 0.999), weight_decay=args.decay)
optimizer = torch.optim.SGD(model.parameters(),
lr=args.lr, momentum=0.99,
weight_decay=args.decay)
train_loss = 0.
train_error = 0.
all_size = len(train_loader)
step = 0
train_loss_t = 0
train_error_t = 0
time_start = time.time()
for epoch in range(1, args.epochs + 1):
model.train()
for batch_idx, (data1, data2, label,
file_name) in enumerate(train_loader):
bag_label = label[0]
data_v_1 = Variable(data1)
data_v_2 = Variable(data2)
if args_gpu:
data_v_1 = data_v_1.cuda()
data_v_2 = data_v_2.cuda()
bag_label = bag_label.cuda()
# reset gradients
optimizer.zero_grad()
# calculate loss and metrics
loss, attention_weights, error = model.calculate_loss(
data_v_1, data_v_2, bag_label)
it_loss = loss.data[0].cpu().numpy()[0, 0]
it_error = error[0]
# epoch loss
train_loss += it_loss
train_error += it_error
# disp loss
train_loss_t += it_loss
train_error_t += it_error
step = step + 1
# backward pass
loss.backward()
# step
optimizer.step()
if step % args.disp == 0:
train_loss_t = train_loss_t / args.disp
train_error_t = train_error_t / args.disp
time_end = time.time()
print('Epoch:{},{}/{}, Loss: {:.4f}, Train error: {:.4f}, Time {:.2f}'.format(
epoch, step, all_size, train_loss_t, train_error_t, time_end - time_start))
time_start = time.time()
train_loss_t = 0
train_error_t = 0
# calculate loss and error for epoch
train_loss = train_loss / len(train_loader)
train_error = train_error / len(train_loader)
path = '{}/cdminet_epoch_{}.pt'.format(args.weight_dir, epoch)
torch.save(model.state_dict(), path)
msg = 'Epoch: {}, Loss: {:.4f}, Train error: {:.4f}'.format(
epoch, train_loss, train_error)
test(model, test_loader, args)
print(msg)
if __name__ == "__main__":
'''
python mil_train.py --data_dir DATA_DIR --weight_dir WEIGHT_DIR
'''
args = argparse.ArgumentParser(description='Start training stage ...')
args.add_argument('--data_dir', required=True, help='Training set dir.')
args.add_argument('--weight_dir', required=True, help='Check point dir.')
args.add_argument(
'--disp',
type=int,
default=100,
help='Number of iterations for display.')
args.add_argument('--epochs', type=int, default=30, help='Max epochs.')
args.add_argument('--lr', type=float, default=1e-4, help='Learning rate.')
args.add_argument(
'--decay',
type=float,
default=10e-4,
help='Weight decay.')
args.add_argument('--seed', type=int, default=1, help='Random seed.')
args.add_argument('--no-gpu', action='store_true', help='Using CPU.')
model = Attention()
train(model, args.parse_args())
print('Done!')