-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlandmarks.py
48 lines (37 loc) · 1.8 KB
/
landmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import cv2
import mediapipe as mp
# Initializing mediapipe pose class.
mp_pose = mp.solutions.pose
# Setting up the Pose function.
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.3, model_complexity=2)
# Initializing mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils
# Path to the folder containing images
folder_path = 'TRAIN/BaddhaKonasana/Images/'
output_folder_path = 'TRAIN/BaddhaKonasana/Landmarks/'
if not os.path.exists(output_folder_path):
os.makedirs(output_folder_path)
# Loop through all files in the folder
for filename in os.listdir(folder_path):
# Check if the file is an image
if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):
# Read the image
image_path = os.path.join(folder_path, filename)
sample_img = cv2.imread(image_path)
# Perform pose detection after converting the image into RGB format.
results = pose.process(cv2.cvtColor(sample_img, cv2.COLOR_BGR2RGB))
# Create a copy of the sample image to draw landmarks on.
img_copy = sample_img.copy()
# Check if any landmarks are found.
if results.pose_landmarks:
# Draw Pose landmarks on the sample image.
mp_drawing.draw_landmarks(image=img_copy, landmark_list=results.pose_landmarks, connections=mp_pose.POSE_CONNECTIONS)
output_image_path = os.path.join(output_folder_path, filename)
cv2.imwrite(output_image_path, img_copy)
# Display the output image with the landmarks drawn, also convert BGR to RGB for display.
# cv2.imshow('Output', img_copy)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# Release mediapipe pose instance
pose.close()