-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataloader.py
72 lines (56 loc) · 2.25 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import os
import pandas as pd
import torch
from torch.utils.data import Dataset
categories = ['Speech', 'Car', 'Cheering', 'Dog', 'Cat', 'Frying_(food)',
'Basketball_bounce', 'Fire_alarm', 'Chainsaw', 'Cello', 'Banjo',
'Singing', 'Chicken_rooster', 'Violin_fiddle', 'Vacuum_cleaner',
'Baby_laughter', 'Accordion', 'Lawn_mower', 'Motorcycle', 'Helicopter',
'Acoustic_guitar', 'Telephone_bell_ringing', 'Baby_cry_infant_cry', 'Blender',
'Clapping']
def ids_to_multinomial(ids):
""" label encoding
Returns:
1d array, multimonial representation, e.g. [1,0,1,0,0,...]
"""
id_to_idx = {id: index for index, id in enumerate(categories)}
y = np.zeros(len(categories))
for id in ids:
index = id_to_idx[id]
y[index] = 1
return y
class LLP_dataset(Dataset):
def __init__(self, label, audio_dir, video_dir, st_dir,
transform=None, a_smooth=1.0, v_smooth=0.9):
self.df = pd.read_csv(label, header=0, sep='\t')
self.filenames = self.df["filename"]
self.audio_dir = audio_dir
self.video_dir = video_dir
self.st_dir = st_dir
self.transform = transform
self.a_smooth = a_smooth
self.v_smooth = v_smooth
def __len__(self):
return len(self.filenames)
def __getitem__(self, idx):
row = self.df.loc[idx, :]
name = row[0][:11]
audio = np.load(os.path.join(self.audio_dir, name + '.npy'))
video_s = np.load(os.path.join(self.video_dir, name + '.npy'))
video_st = np.load(os.path.join(self.st_dir, name + '.npy'))
ids = row[-1].split(',')
label = ids_to_multinomial(ids)
Pa = self.a_smooth * label + (1 - self.a_smooth) * 0.5
Pv = self.v_smooth * label + (1 - self.v_smooth) * 0.5
sample = {'audio': audio, 'video_s': video_s, 'video_st': video_st,
'label': label, 'Pa': Pa, 'Pv': Pv, 'idx': np.array([idx])}
if self.transform:
sample = self.transform(sample)
return sample
class ToTensor:
def __call__(self, sample):
tensor = dict()
for key in sample:
tensor[key] = torch.from_numpy(sample[key])
return tensor