-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
run_video_face_detect.py
95 lines (82 loc) · 3.64 KB
/
run_video_face_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
This code uses the pytorch model to detect faces from live video or camera.
"""
import argparse
import sys
import cv2
from vision.ssd.config.fd_config import define_img_size
parser = argparse.ArgumentParser(
description='detect_video')
parser.add_argument('--net_type', default="RFB", type=str,
help='The network architecture ,optional: RFB (higher precision) or slim (faster)')
parser.add_argument('--input_size', default=480, type=int,
help='define network input size,default optional value 128/160/320/480/640/1280')
parser.add_argument('--threshold', default=0.7, type=float,
help='score threshold')
parser.add_argument('--candidate_size', default=1000, type=int,
help='nms candidate size')
parser.add_argument('--path', default="imgs", type=str,
help='imgs dir')
parser.add_argument('--test_device', default="cuda:0", type=str,
help='cuda:0 or cpu')
parser.add_argument('--video_path', default="/home/linzai/Videos/video/16_1.MP4", type=str,
help='path of video')
args = parser.parse_args()
input_img_size = args.input_size
define_img_size(input_img_size) # must put define_img_size() before 'import create_mb_tiny_fd, create_mb_tiny_fd_predictor'
from vision.ssd.mb_tiny_fd import create_mb_tiny_fd, create_mb_tiny_fd_predictor
from vision.ssd.mb_tiny_RFB_fd import create_Mb_Tiny_RFB_fd, create_Mb_Tiny_RFB_fd_predictor
from vision.utils.misc import Timer
label_path = "./models/voc-model-labels.txt"
net_type = args.net_type
cap = cv2.VideoCapture(args.video_path) # capture from video
# cap = cv2.VideoCapture(0) # capture from camera
class_names = [name.strip() for name in open(label_path).readlines()]
num_classes = len(class_names)
test_device = args.test_device
candidate_size = args.candidate_size
threshold = args.threshold
if net_type == 'slim':
model_path = "models/pretrained/version-slim-320.pth"
# model_path = "models/pretrained/version-slim-640.pth"
net = create_mb_tiny_fd(len(class_names), is_test=True, device=test_device)
predictor = create_mb_tiny_fd_predictor(net, candidate_size=candidate_size, device=test_device)
elif net_type == 'RFB':
model_path = "models/pretrained/version-RFB-320.pth"
# model_path = "models/pretrained/version-RFB-640.pth"
net = create_Mb_Tiny_RFB_fd(len(class_names), is_test=True, device=test_device)
predictor = create_Mb_Tiny_RFB_fd_predictor(net, candidate_size=candidate_size, device=test_device)
else:
print("The net type is wrong!")
sys.exit(1)
net.load(model_path)
timer = Timer()
sum = 0
while True:
ret, orig_image = cap.read()
if orig_image is None:
print("end")
break
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
timer.start()
boxes, labels, probs = predictor.predict(image, candidate_size / 2, threshold)
interval = timer.end()
print('Time: {:.6f}s, Detect Objects: {:d}.'.format(interval, labels.size(0)))
for i in range(boxes.size(0)):
box = boxes[i, :]
label = f" {probs[i]:.2f}"
cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 4)
# cv2.putText(orig_image, label,
# (box[0], box[1] - 10),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5, # font scale
# (0, 0, 255),
# 2) # line type
orig_image = cv2.resize(orig_image, None, None, fx=0.8, fy=0.8)
sum += boxes.size(0)
cv2.imshow('annotated', orig_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print("all face num:{}".format(sum))