-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsubplot4.m
124 lines (100 loc) · 3.69 KB
/
subplot4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
close all;
load('5w-h08-N272-001+param2-04812-0005-0005-Re011-sigma01','u_ens','w','w_gen','w_obs');
for i = 1:N_ens % kann parallelisiert werden
u_last(1,:) = u_ens(:,1,8,i); % nehme den letzten Zustand des Ensembles wieder auf.
u_last(2,:) = u_ens(:,2,8,i);
u02 = @(locations) u_last;
%delete(model.InitialConditions); % lösche dazu den Anfangswert
setInitialConditions(model, u02); % und lege den zum letzten Zustand als neuen Anfangswert an
tlist1 = 7:1:8;
% global rho0_short;
% global B0_short;
% global eta_short;
% global A0_short;
% global B_asterisk_short;
%
% rho0_short = 1.2*rho0;
% B0_short = 1.2*B0;
% eta_short = 1.2*eta;
% A0_short = 0.8*A0;
% B_asterisk_short = 1.2*B_asterisk;
% specifyCoefficients(model, 'm', 0, 'd', 1, 'c', @ccoeffunction, 'a', @acoeffunction, 'f', @fcoeffunction);
%
g=sprintf('-%d-', tlist1);
fprintf('Berechne für Mitglied %d den Forecast im Zeitschritt %s\n',i,g);
result2 = solvepde(model, tlist1);
u_ens(:,:,9,i) = result2.NodalSolution(:,:,2);
% Modellrauschen + Clamp:
u_ens(:,1,9,i) = max(min(u_ens(:,1,9,i) + mvnrnd(zeros(size_ugen(1),1), Q1)',1),0);
u_ens(:,2,9,i) = max(min(u_ens(:,2,9,i) + mvnrnd(zeros(size_ugen(1),1), Q2)',1),0);
clear result2;
end
u_modell2(:,:,9) = mean(u_ens(:,:,9,:),4);
w_modell(:,:)=w(:,:);
w_modell(:,9)=u_modell2(:,1,9).*u_modell2(:,2,9);
for i=9
figure
%suptitle('Wahrscheinlichkeitsdichte zu T=8');
ah(1)=subplot(2,2,1);
pdeplot(model, 'xydata', w_gen(:,9), 'contour', 'off', 'colorbar', 'off');
title(['wahr'])
ylabel('y-Koord.')
axis equal
axis([0 10 0 10])
set(gca,'xtick',[])
set(gca,'xticklabel',[])
set(gca,'ytick',[])
set(gca,'yticklabel',[])
ah(4)=subplot(2,2,4);
pdeplot(model, 'xydata', w(:,9), 'contour', 'off', 'colorbar', 'off');
title(['assimiliert'])
xlabel('x-Koordinate')
axis equal
axis([0 10 0 10])
set(gca,'xtick',[])
set(gca,'xticklabel',[])
set(gca,'ytick',[])
set(gca,'yticklabel',[])
ah(3)=subplot(2,2,3);
pdeplot(model, 'xydata', w_modell(:,9), 'contour', 'off', 'colorbar', 'off');
title(['Modell vor Update'])
xlabel('x-Koordinate')
ylabel('y-Koord.')
axis equal
axis([0 10 0 10])
set(gca,'xtick',[])
set(gca,'xticklabel',[])
set(gca,'ytick',[])
set(gca,'yticklabel',[])
ah(2)=subplot(2,2,2);
pdeplot(model, 'xydata', w_obs(:,9), 'contour', 'off', 'colorbar', 'off');
title(['observiert'])
axis equal
axis([0 10 0 10])
set(gca,'xtick',[])
set(gca,'xticklabel',[])
set(gca,'ytick',[])
set(gca,'yticklabel',[])
end
pos1 = get(ah(1),'Position');
pos2 = get(ah(2),'Position');
pos3 = get(ah(3),'Position');
pos4 = get(ah(4),'Position');
pos2(1) = pos1(1)+pos2(3)-0.077;
set(ah(2),'Position',pos2)
pos3(2) = pos1(2)-pos1(4)-0.04;
set(ah(3),'Position',pos3)
pos1 = get(ah(1),'Position');
pos2 = get(ah(2),'Position');
pos3 = get(ah(3),'Position');
pos4 = get(ah(4),'Position');
pos4(1) = pos2(1)+0.00020;
pos4(2) = pos3(2);
set(ah(4),'Position',pos4)
colorbar('Position', [pos1(1)+2*pos1(3)-0.1 pos3(2) 0.05 pos3(2)+2*pos1(3)-0.15]);
caxis([0, 1]);
colormap jet
axes( 'Position', [0, 0.98, 0.9, 0.05] ) ;
set( gca, 'Color', 'None', 'XColor', 'None', 'YColor', 'None' ) ;
text( 0.5, 0, 'Wahrscheinlichkeitsdichte zu T=8', 'FontSize', 14', 'FontWeight', 'Bold', ...
'HorizontalAlignment', 'Center') ;