This repository has been archived by the owner on Jun 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathviz.py
executable file
·475 lines (403 loc) · 15.1 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# coding=utf-8
# given the maskrcnn json output and the image, visualize
import sys,os,argparse
import cv2
import json
import numpy as np
import pycocotools.mask as cocomask
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("img",help="img has to be the same as the resultjson")
parser.add_argument("resultjson")
parser.add_argument("newimg")
parser.add_argument("--mask",action="store_true",help="whether there is mask in the result")
parser.add_argument("--kp",action="store_true",help="vis keypoint")
parser.add_argument("--nobox",action="store_true",help="no bounding box")
parser.add_argument("--only",default=None,help="only visualize certain class")
parser.add_argument("--thres",default=0.05,type=float,help="confidence score thresold")
parser.add_argument("--kp_thres",default=2.0,type=float,help="kp vis threshold, apply to logit")
parser.add_argument("--ox",default=0,type=int,help="img offset")
parser.add_argument("--oy",default=0,type=int)
parser.add_argument("--oxmax",default=-1,type=int)
parser.add_argument("--oymax",default=-1,type=int)
return parser.parse_args()
# for cv3
try:
a = cv2.CV_AA
except Exception as e:
cv2.CV_AA = cv2.LINE_AA
# copied from https://stackoverflow.com/questions/2328339/how-to-generate-n-different-colors-for-any-natural-number-n
PALETTE_HEX = [
"#000000", "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6", "#A30059",
"#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF", "#997D87",
"#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53", "#FF2F80",
"#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100",
"#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349", "#00846F",
"#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99", "#001E09",
"#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1", "#788D66",
"#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED", "#886F4C",
"#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F", "#938A81",
"#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1", "#1E6E00",
"#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF", "#9B9700",
"#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465", "#922329",
"#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C",
"#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66", "#222800",
"#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200", "#5B4E51",
"#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94",
"#7ED379", "#012C58"]
def _parse_hex_color(s):
r = int(s[1:3], 16)
g = int(s[3:5], 16)
b = int(s[5:7], 16)
return (r, g, b)
PALETTE_RGB = np.asarray(
list(map(_parse_hex_color, PALETTE_HEX)),
dtype='int32')
class BoxBase(object):
__slots__ = ['x1', 'y1', 'x2', 'y2']
def __init__(self, x1, y1, x2, y2):
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
def copy(self):
new = type(self)()
for i in self.__slots__:
setattr(new, i, getattr(self, i))
return new
def __str__(self):
return '{}(x1={}, y1={}, x2={}, y2={})'.format(
type(self).__name__, self.x1, self.y1, self.x2, self.y2)
__repr__ = __str__
def area(self):
return self.w * self.h
def is_box(self):
return self.w > 0 and self.h > 0
class IntBox(BoxBase):
def __init__(self, x1, y1, x2, y2):
for k in [x1, y1, x2, y2]:
assert isinstance(k, int)
super(IntBox, self).__init__(x1, y1, x2, y2)
@property
def w(self):
return self.x2 - self.x1 + 1
@property
def h(self):
return self.y2 - self.y1 + 1
def is_valid_box(self, shape):
"""
Check that this rect is a valid bounding box within this shape.
Args:
shape: int [h, w] or None.
Returns:
bool
"""
if min(self.x1, self.y1) < 0:
return False
if min(self.w, self.h) <= 0:
return False
if self.x2 >= shape[1]:
return False
if self.y2 >= shape[0]:
return False
return True
def clip_by_shape(self, shape):
"""
Clip xs and ys to be valid coordinates inside shape
Args:
shape: int [h, w] or None.
"""
self.x1 = np.clip(self.x1, 0, shape[1] - 1)
self.x2 = np.clip(self.x2, 0, shape[1] - 1)
self.y1 = np.clip(self.y1, 0, shape[0] - 1)
self.y2 = np.clip(self.y2, 0, shape[0] - 1)
def roi(self, img):
assert self.is_valid_box(img.shape[:2]), "{} vs {}".format(self, img.shape[:2])
return img[self.y1:self.y2 + 1, self.x1:self.x2 + 1]
# from tensorpack
def draw_boxes(im, boxes, labels=None, color=None,font_scale=0.3,thickness=1):
if len(boxes) == 0:
return im
"""
Args:
im (np.ndarray): a BGR image in range [0,255]. It will not be modified.
boxes (np.ndarray or list[BoxBase]): If an ndarray,
must be of shape Nx4 where the second dimension is [x1, y1, x2, y2].
labels: (list[str] or None)
color: a 3-tuple (in range [0, 255]). By default will choose automatically.
Returns:
np.ndarray: a new image.
"""
FONT = cv2.FONT_HERSHEY_SIMPLEX
FONT_SCALE = font_scale
if isinstance(boxes, list):
arr = np.zeros((len(boxes), 4), dtype='int32')
for idx, b in enumerate(boxes):
assert isinstance(b, BoxBase), b
arr[idx, :] = [int(b.x1), int(b.y1), int(b.x2), int(b.y2)]
boxes = arr
else:
boxes = boxes.astype('int32')
if labels is not None:
assert len(labels) == len(boxes), "{} != {}".format(len(labels), len(boxes))
areas = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1)
sorted_inds = np.argsort(-areas) # draw large ones first
assert areas.min() > 0, areas.min()
# allow equal, because we are not very strict about rounding error here
#assert boxes[:, 0].min() >= 0 and boxes[:, 1].min() >= 0 \
# and boxes[:, 2].max() <= im.shape[1] and boxes[:, 3].max() <= im.shape[0], \
# "Image shape: {}\n Boxes:\n{}".format(str(im.shape), str(boxes))
im = im.copy()
COLOR = (218, 218, 218) if color is None else color
COLOR_DIFF_WEIGHT = np.asarray((3, 4, 2), dtype='int32') # https://www.wikiwand.com/en/Color_difference
COLOR_CANDIDATES = PALETTE_RGB[:, ::-1]
if im.ndim == 2 or (im.ndim == 3 and im.shape[2] == 1):
im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
for i in sorted_inds:
box = boxes[i, :]
# for cropped visualization
if box[0] < 0 or box[1] < 0 or box[2] < 0 or box[3] < 0:
continue
cat_name = labels[i].split(",")[0]
#color = None
#if cat2color.has_key(cat_name):
if cat_name in cat2color:
color = cat2color[cat_name]
best_color = COLOR if color is None else color
if labels is not None:
label = labels[i]
# find the best placement for the text
((linew, lineh), _) = cv2.getTextSize(label, FONT, FONT_SCALE, 1)
bottom_left = [box[0] + 1, box[1] - 0.3 * lineh]
top_left = [box[0] + 1, box[1] - 1.3 * lineh]
if top_left[1] < 0: # out of image
top_left[1] = box[3] - 1.3 * lineh
bottom_left[1] = box[3] - 0.3 * lineh
textbox = IntBox(int(top_left[0]), int(top_left[1]),
int(top_left[0] + linew), int(top_left[1] + lineh))
textbox.clip_by_shape(im.shape[:2])
if color is None:
# find the best color
mean_color = textbox.roi(im).mean(axis=(0, 1))
best_color_ind = (np.square(COLOR_CANDIDATES - mean_color) *
COLOR_DIFF_WEIGHT).sum(axis=1).argmax()
best_color = COLOR_CANDIDATES[best_color_ind].tolist()
best_color = list(np.array(best_color, dtype="float"))
cv2.putText(im, label, (textbox.x1, textbox.y2),
FONT, FONT_SCALE, color=best_color)#, lineType=cv2.LINE_AA)
cv2.rectangle(im, (box[0], box[1]), (box[2], box[3]),
color=best_color, thickness=thickness)
return im
def get_keypoints():
"""Get the COCO keypoints and their left/right flip coorespondence map."""
# Keypoints are not available in the COCO json for the test split, so we
# provide them here.
keypoints = [
'nose',
'left_eye',
'right_eye',
'left_ear',
'right_ear',
'left_shoulder',
'right_shoulder',
'left_elbow',
'right_elbow',
'left_wrist',
'right_wrist',
'left_hip',
'right_hip',
'left_knee',
'right_knee',
'left_ankle',
'right_ankle'
]
keypoint_flip_map = {
'left_eye': 'right_eye',
'left_ear': 'right_ear',
'left_shoulder': 'right_shoulder',
'left_elbow': 'right_elbow',
'left_wrist': 'right_wrist',
'left_hip': 'right_hip',
'left_knee': 'right_knee',
'left_ankle': 'right_ankle'
}
return keypoints, keypoint_flip_map
def kp_connections(keypoints):
kp_lines = [
[keypoints.index('left_eye'), keypoints.index('right_eye')],
[keypoints.index('left_eye'), keypoints.index('nose')],
[keypoints.index('right_eye'), keypoints.index('nose')],
[keypoints.index('right_eye'), keypoints.index('right_ear')],
[keypoints.index('left_eye'), keypoints.index('left_ear')],
[keypoints.index('right_shoulder'), keypoints.index('right_elbow')],
[keypoints.index('right_elbow'), keypoints.index('right_wrist')],
[keypoints.index('left_shoulder'), keypoints.index('left_elbow')],
[keypoints.index('left_elbow'), keypoints.index('left_wrist')],
[keypoints.index('right_hip'), keypoints.index('right_knee')],
[keypoints.index('right_knee'), keypoints.index('right_ankle')],
[keypoints.index('left_hip'), keypoints.index('left_knee')],
[keypoints.index('left_knee'), keypoints.index('left_ankle')],
[keypoints.index('right_shoulder'), keypoints.index('left_shoulder')],
[keypoints.index('right_hip'), keypoints.index('left_hip')],
]
return kp_lines
def int_it(w):
return tuple(int(one) for one in w)
def vis_keypoints(img, kps, kp_thresh=2, alpha=0.7):
"""Visualizes keypoints (adapted from vis_one_image).
kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob).
"""
dataset_keypoints, _ = get_keypoints()
kp_lines = kp_connections(dataset_keypoints)
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)]
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]
# Perform the drawing on a copy of the image, to allow for blending.
kp_mask = np.copy(img)
# Draw mid shoulder / mid hip first for better visualization.
mid_shoulder = (
kps[:2, dataset_keypoints.index('right_shoulder')] +
kps[:2, dataset_keypoints.index('left_shoulder')]) / 2.0
sc_mid_shoulder = np.minimum(
kps[2, dataset_keypoints.index('right_shoulder')],
kps[2, dataset_keypoints.index('left_shoulder')])
mid_hip = (
kps[:2, dataset_keypoints.index('right_hip')] +
kps[:2, dataset_keypoints.index('left_hip')]) / 2.0
sc_mid_hip = np.minimum(
kps[2, dataset_keypoints.index('right_hip')],
kps[2, dataset_keypoints.index('left_hip')])
nose_idx = dataset_keypoints.index('nose')
if sc_mid_shoulder > kp_thresh and kps[2, nose_idx] > kp_thresh:
cv2.line(
kp_mask, int_it(tuple(mid_shoulder)), int_it(tuple(kps[:2, nose_idx])),
color=colors[len(kp_lines)], thickness=2, lineType=cv2.CV_AA)
if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh:
cv2.line(
kp_mask, int_it(tuple(mid_shoulder)), int_it(tuple(mid_hip)),
color=colors[len(kp_lines) + 1], thickness=2, lineType=cv2.CV_AA)
# Draw the keypoints.
for l in range(len(kp_lines)):
i1 = kp_lines[l][0]
i2 = kp_lines[l][1]
p1 = int(kps[0, i1]), int(kps[1, i1])
p2 = int(kps[0, i2]), int(kps[1, i2])
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
cv2.line(
kp_mask, p1, p2,
color=colors[l], thickness=2, lineType=cv2.CV_AA)
if kps[2, i1] > kp_thresh:
cv2.circle(
kp_mask, p1,
radius=3, color=colors[l], thickness=-1, lineType=cv2.CV_AA)
if kps[2, i2] > kp_thresh:
cv2.circle(
kp_mask, p2,
radius=3, color=colors[l], thickness=-1, lineType=cv2.CV_AA)
# Blend the keypoints.
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)
def draw_mask(im, mask, alpha=0.5, color=None, show_border=True,border_thick=1):
"""
Overlay a mask on top of the image.
Args:
im: a 3-channel uint8 image in BGR
mask: a binary 1-channel image of the same size
color: if None, will choose automatically
"""
if color is None:
color = PALETTE_RGB[np.random.choice(len(PALETTE_RGB))][::-1]
im = np.where(np.squeeze(np.repeat((mask > 0)[:, :, None], 3, axis=2)),
im * (1 - alpha) + color * alpha, im)
if show_border:
if cv2.__version__.startswith("2"):
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
else: # cv 3
_,contours, _ = cv2.findContours(mask.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(im, contours, -1, (255,255,255), border_thick, lineType=cv2.CV_AA)
im = im.astype('uint8')
return im
def decode_mask(mask_obj):
mask = cocomask.decode([mask_obj])
#print mask.shape
return mask
# conver from COCO format (x,y,w,h) to (x1,y1,x2,y2)
def convert_box(box):
return [box[0],box[1],box[0]+box[2],box[1]+box[3]]
# conver from (x1,y1,x2,y2) to coco (x,y,w,h)
def to_coco_box(box):
return [box[0],box[1],box[2]-box[0],box[3]-box[1]]
# BGR
cat2color = {
"car":np.array([255,0,0]),
"person":np.array([0,255,0])
}
# need box format: (x1,y1,x2,y2)
def draw_result(im,data,hasmask=False,haskp=False,nobox=False,kp_thresh=2.0,font_scale=0.3,thickness=1):
if len(data) == 0:
return im
tags = []
for one in data:
tags.append("%s,%.2f"%(one['cat_name'],one['score']))
boxes = np.asarray([one['bbox'] for one in data])
if not nobox:
newim = draw_boxes(im,boxes,tags,color=np.array([255,0,0]),font_scale=font_scale,thickness=thickness)
else:
newim = im
if hasmask:
for one in data:
# ---- specially for site visit
cat_name = one['cat_name']
color = None
#if cat2color.has_key(cat_name):
if cat_name in cat2color:
color = cat2color[cat_name]
# --------------------------
mask = decode_mask(one['segmentation']) # (imgh,imgw,1)
newim = draw_mask(newim,mask,color=color)
if haskp:
#kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob).
for one in data:
newim = vis_keypoints(newim,np.array(one['kps']).reshape(4,17),kp_thresh=kp_thresh)
return newim
import matplotlib.pyplot as plt
if __name__ == "__main__":
args = get_args()
img = cv2.imread(args.img,cv2.IMREAD_COLOR) # (H,W,C)
h,w = img.shape[:2]
if args.oxmax < 0:
args.oxmax = w
if args.oymax < 0:
args.oymax = h
with open(args.resultjson,"r") as f:
data = json.load(f)
# --------------------- specially for site visit 02152018
"""
cat2thres = {
"car":0.05,
"person":0.5
}
newdata = []
for one in data:
cat_name = one['cat_name']
if cat2thres.has_key(cat_name):
if one['score'] >= cat2thres[cat_name]:
newdata.append(one)
data = newdata
# ---------------------
data = [one for one in data if one['score'] >= args.thres]
onlys = ["person","car"]
data = [one for one in data if one['cat_name'] in onlys]
"""
# --------------
data = [one for one in data if one['score'] >= args.thres]
if args.only is not None:
data = [one for one in data if one['cat_name'].lower() == args.only.lower()]
# convert the boexs format from COCO
for i in range(len(data)):
data[i]['bbox'] = convert_box(data[i]['bbox'])
newimg = draw_result(img,data,hasmask=args.mask,haskp=args.kp,nobox=args.nobox,kp_thresh=args.kp_thres)
newimg = newimg[args.oy:args.oymax,args.ox:args.oxmax,:]
cv2.imwrite(args.newimg,newimg)
#plt.imshow(newimg)
#plt.show()