This repository has been archived by the owner on Jun 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathvis_json.py
executable file
·323 lines (269 loc) · 10.7 KB
/
vis_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# coding=utf-8
"""visualize detection or mtsc jsons
"""
import argparse
import cv2
import copy
import json
import os
import sys
from tqdm import tqdm
from glob import glob
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument("videonamelst")
parser.add_argument("framepath")
parser.add_argument("jsonpath")
parser.add_argument("despath")
parser.add_argument("--score_thres", default=0.0, type=float)
parser.add_argument("--show_frame_num", action="store_true")
parser.add_argument("--show_only_result_frame", action="store_true")
parser.add_argument("--slow_down", default=None, type=float,
help="slow down the bounding box, for demoing slow methods")
parser.add_argument("--only_every", default=None, type=int,
help="only showing every k frames")
PALETTE_HEX = [
"#000000", "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6",
"#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF",
"#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53",
"#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA",
"#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349",
"#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99",
"#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1",
"#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED",
"#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F",
"#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1",
"#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF",
"#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465",
"#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72",
"#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66",
"#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200",
"#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94", "#A30059",
"#997D87", "#FF2F80", "#D16100", "#00846F", "#001E09", "#788D66", "#886F4C",
"#938A81", "#1E6E00", "#9B9700", "#922329", "#6A3A4C", "#222800", "#5B4E51",
"#7ED379", "#012C58"]
def _parse_hex_color(s):
r = int(s[1:3], 16)
g = int(s[3:5], 16)
b = int(s[5:7], 16)
return (r, g, b)
COLORS = list(map(_parse_hex_color, PALETTE_HEX))
PALETTE_RGB = np.asarray(COLORS, dtype="int32")
class BoxBase(object):
__slots__ = ['x1', 'y1', 'x2', 'y2']
def __init__(self, x1, y1, x2, y2):
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
def copy(self):
new = type(self)()
for i in self.__slots__:
setattr(new, i, getattr(self, i))
return new
def __str__(self):
return '{}(x1={}, y1={}, x2={}, y2={})'.format(
type(self).__name__, self.x1, self.y1, self.x2, self.y2)
__repr__ = __str__
def area(self):
return self.w * self.h
def is_box(self):
return self.w > 0 and self.h > 0
class IntBox(BoxBase):
def __init__(self, x1, y1, x2, y2):
for k in [x1, y1, x2, y2]:
assert isinstance(k, int)
super(IntBox, self).__init__(x1, y1, x2, y2)
@property
def w(self):
return self.x2 - self.x1 + 1
@property
def h(self):
return self.y2 - self.y1 + 1
def is_valid_box(self, shape):
"""
Check that this rect is a valid bounding box within this shape.
Args:
shape: int [h, w] or None.
Returns:
bool
"""
if min(self.x1, self.y1) < 0:
return False
if min(self.w, self.h) <= 0:
return False
if self.x2 >= shape[1]:
return False
if self.y2 >= shape[0]:
return False
return True
def clip_by_shape(self, shape):
"""
Clip xs and ys to be valid coordinates inside shape
Args:
shape: int [h, w] or None.
"""
self.x1 = np.clip(self.x1, 0, shape[1] - 1)
self.x2 = np.clip(self.x2, 0, shape[1] - 1)
self.y1 = np.clip(self.y1, 0, shape[0] - 1)
self.y2 = np.clip(self.y2, 0, shape[0] - 1)
def roi(self, img):
assert self.is_valid_box(img.shape[:2]), "{} vs {}".format(
self, img.shape[:2])
return img[self.y1:self.y2 + 1, self.x1:self.x2 + 1]
# from tensorpack
def draw_boxes(im, boxes, labels=None, colors=None, font_scale=0.6,
font_thick=1, box_thick=1, bottom_text=False, offsets=None):
if not boxes:
return im
boxes = np.asarray(boxes, dtype="int")
FONT = cv2.FONT_HERSHEY_SIMPLEX
FONT_SCALE = font_scale
if labels is not None:
assert len(labels) == len(boxes), "{} != {}".format(len(labels), len(boxes))
if colors is not None:
assert len(labels) == len(colors)
areas = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1)
sorted_inds = np.argsort(-areas) # draw large ones first
assert areas.min() > 0, areas.min()
im = im.copy()
COLOR_DIFF_WEIGHT = np.asarray((3, 4, 2), dtype='int32')
COLOR_CANDIDATES = PALETTE_RGB[:, ::-1]
if im.ndim == 2 or (im.ndim == 3 and im.shape[2] == 1):
im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
for i in sorted_inds:
box = boxes[i, :]
# for cropped visualization
if box[0] < 0 or box[1] < 0 or box[2] < 0 or box[3] < 0:
continue
color = (218, 218, 218)
if colors is not None:
color = colors[i]
best_color = color
lineh = 2 # for box enlarging, replace with text height if there is label
if labels is not None:
label = labels[i]
# find the best placement for the text
((linew, lineh), _) = cv2.getTextSize(label, FONT, FONT_SCALE, font_thick)
bottom_left = [box[0] + 1, box[1] - 0.3 * lineh]
top_left = [box[0] + 1, box[1] - 1.3 * lineh]
if top_left[1] < 0: # out of image
top_left[1] = box[3] - 1.3 * lineh
bottom_left[1] = box[3] - 0.3 * lineh
textbox = IntBox(int(top_left[0]), int(top_left[1]),
int(top_left[0] + linew), int(top_left[1] + lineh))
textbox.clip_by_shape(im.shape[:2])
offset = 0
if offsets is not None:
offset = lineh * offsets[i]
if color is None:
# find the best color
mean_color = textbox.roi(im).mean(axis=(0, 1))
best_color_ind = (np.square(COLOR_CANDIDATES - mean_color) *
COLOR_DIFF_WEIGHT).sum(axis=1).argmax()
best_color = COLOR_CANDIDATES[best_color_ind].tolist()
if bottom_text:
cv2.putText(im, label, (box[0] + 2, box[3] - 4 + offset),
FONT, FONT_SCALE, color=best_color, thickness=font_thick)
else:
cv2.putText(im, label, (textbox.x1, textbox.y2 - offset),
FONT, FONT_SCALE, color=best_color, thickness=font_thick)
#, lineType=cv2.LINE_AA)
# expand the box on y axis for overlapping results
offset = 0
if offsets is not None:
offset = lineh * offsets[i]
box[0] -= box_thick * offsets[i] + 1
box[2] += box_thick * offsets[i] + 1
if bottom_text:
box[1] -= box_thick * offsets[i] + 1
box[3] += offset
else:
box[3] += box_thick * offsets[i] + 1
box[1] -= offset
cv2.rectangle(im, (box[0], box[1]), (box[2], box[3]),
color=best_color, thickness=box_thick)
return im
if __name__ == "__main__":
args = parser.parse_args()
videonames = [os.path.splitext(os.path.basename(line.strip()))[0]
for line in open(args.videonamelst, "r").readlines()]
color_queue = copy.deepcopy(COLORS)
global_color_queue = copy.deepcopy(COLORS) # for global track ids
color_assign = {} # track Id -> / "cat_name" ->
for videoname in tqdm(videonames, ascii=True):
frames = glob(os.path.join(args.framepath, videoname, "*.jpg"))
frames.sort()
target_path = os.path.join(args.despath, videoname)
if not os.path.exists(target_path):
os.makedirs(target_path)
actual_count = 0
for t, frame in enumerate(frames):
filename = os.path.splitext(os.path.basename(frame))[0]
frameIdx = int(filename.split("_F_")[-1])
jsonfile = os.path.join(args.jsonpath, "%s.json" % filename)
if args.slow_down is not None:
frameIdx = int(frameIdx - args.slow_down * frameIdx)
jsonfile = os.path.join(
args.jsonpath, "%s_F_%08d.json" % (videoname, frameIdx))
if args.only_every is not None:
if t % args.only_every != 0:
continue
boxes = []
labels = []
box_colors = []
if os.path.exists(jsonfile):
with open(jsonfile, "r") as f:
data = json.load(f)
for one in data:
if one['score'] < args.score_thres:
continue
box = one['bbox'] # [x, y, w, h]
box = [box[0], box[1], box[0] + box[2], box[1] + box[3]]
boxes.append(box)
#if one.has_key("trackId"):
if "trackId" in one:
trackId = int(one['trackId'])
if "gid" in one: # show global tracks
global_track_id = int(one["gid"])
color_key = (trackId, one['cat_name'])
conf = ""
if one["score"] != 1.:
conf = "%.2f" % one["score"]
labels.append("%s #%s %s"%(one['cat_name'], trackId, conf))
#if not color_assign.has_key(color_key):
if color_key not in color_assign:
this_color = color_queue.pop()
color_assign[color_key] = this_color
# recycle it
color_queue.insert(0, this_color)
color = color_assign[color_key]
box_colors.append(color)
else:
# no trackId, just visualize the boxes
cat_name = one['cat_name']
labels.append("%s: %.2f"%(cat_name, float(one['score'])))
#if not color_assign.has_key(cat_name):
if cat_name not in color_assign:
this_color = color_queue.pop()
color_assign[cat_name] = this_color
# recycle it
color_queue.insert(0, this_color)
color = color_assign[cat_name]
box_colors.append(color)
else:
if args.show_only_result_frame:
continue
ori_im = cv2.imread(frame, cv2.IMREAD_COLOR)
new_im = draw_boxes(ori_im, boxes, labels, box_colors, font_scale=0.8,
font_thick=2, box_thick=2, bottom_text=False)
if args.show_frame_num:
# write the frame idx
cv2.putText(new_im, "# %d" % frameIdx,
(0, 20), cv2.FONT_HERSHEY_SIMPLEX,
1, (0, 255, 0), 2)
if args.show_only_result_frame or args.only_every is not None:
filename = "%08d" % actual_count
actual_count += 1
target_file = os.path.join(target_path, "%s.jpg" % filename)
cv2.imwrite(target_file, new_im)