This repository has been archived by the owner on Jun 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathtester.py
executable file
·99 lines (82 loc) · 3.58 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# coding=utf-8
# tester, given the config with model path
import tensorflow as tf
class Tester():
def __init__(self,models,config,add_mask=True):
self.config = config
self.models = models
# infereence out:
self.final_boxes = [model.final_boxes for model in models]
# [R]
self.final_labels = [model.final_labels for model in models]
self.final_probs = [model.final_probs for model in models]
if config.add_act:
if config.act_v2:
self.act_single_boxes = [model.act_single_boxes for model in models]
self.act_single_label_logits = [model.act_single_label_logits for model in models]
else:
self.act_final_boxes = [model.act_final_boxes for model in models]
# [R]
self.act_final_labels = [model.act_final_labels for model in models]
self.act_final_probs = [model.act_final_probs for model in models]
self.small_object = False
if config.use_small_object_head:
self.small_object = True
if self.small_object:
# infereence out:
self.so_final_boxes = [model.so_final_boxes for model in models]
# [R]
self.so_final_labels = [model.so_final_labels for model in models]
self.so_final_probs = [model.so_final_probs for model in models]
self.add_mask = add_mask
if add_mask:
# [R,14,14]
self.final_masks = [model.final_masks for model in models]
def step(self,sess,batch):
config = self.config
# give one batch of Dataset, use model to get the result,
assert isinstance(sess,tf.Session)
batchIdxs,batch_datas = batch
#assert len(batch_datas) == len(self.models) # there may be less data in the end
num_input = len(batch_datas) # use this to cap the model input
feed_dict = {}
for _,batch_data,model in zip(range(num_input),batch_datas,self.models):
feed_dict.update(model.get_feed_dict(batch_data,is_train=False))
sess_input = []
if self.add_mask:
for _,boxes,labels,probs,masks in zip(range(num_input),self.final_boxes,self.final_labels,self.final_probs,self.final_masks):
sess_input+=[boxes,labels,probs,masks]
else:
if self.small_object:
for _,boxes,labels,probs,so_boxes, so_labels, so_probs in zip(range(num_input),self.final_boxes,self.final_labels,self.final_probs,self.so_final_boxes,self.so_final_labels,self.so_final_probs):
sess_input+=[boxes,labels,probs,so_boxes,so_labels,so_probs]
else:
for _,boxes,labels,probs in zip(range(num_input),self.final_boxes,self.final_labels,self.final_probs):
sess_input+=[boxes,labels,probs]
if config.add_act:
sess_input = []
if config.act_v2:
for _,boxes,labels,probs,actsingleboxes,actsinglelabels in zip(range(num_input),self.final_boxes,self.final_labels,self.final_probs,self.act_single_boxes,self.act_single_label_logits):
sess_input+=[boxes,labels,probs,actsingleboxes,actsinglelabels]
else:
for _,boxes,labels,probs,actboxes,actlabels,actprobs in zip(range(num_input),self.final_boxes,self.final_labels,self.final_probs,self.act_final_boxes,self.act_final_labels,self.act_final_probs):
sess_input+=[boxes,labels,probs,actboxes,actlabels,actprobs]
#final_boxes, final_probs, final_labels, final_masks = sess.run([self.final_boxes, self.final_probs, self.final_labels, self.final_masks],feed_dict=feed_dict)
#return final_boxes, final_probs, final_labels, final_masks
outputs = sess.run(sess_input,feed_dict=feed_dict)
if self.add_mask:
pn = 4
else:
if self.small_object:
pn = 6
else:
pn = 3
if config.add_act:
if config.act_v2:
pn = 5
else:
pn = 6
outputs = [outputs[i*pn:(i*pn+pn)] for i in range(num_input)]
else:
outputs = [outputs[i*pn:(i*pn+pn)] for i in range(num_input)]
return outputs