diff --git a/src/U_polynomials.jl b/src/U_polynomials.jl index eec298d..b2a54b9 100644 --- a/src/U_polynomials.jl +++ b/src/U_polynomials.jl @@ -86,10 +86,10 @@ function Uk_poly_Hankel(p, v, p2, x::T) where T <: Float64 end Uk_poly_Hankel(p, v, p2, x) = Uk_poly_Jn(p, v, p2, x::BigFloat) -Uk_poly_In(p, v, p2, ::Type{Float32}) = Uk_poly3(p, v, p2)[1] -Uk_poly_In(p, v, p2, ::Type{Float64}) = Uk_poly5(p, v, p2)[1] -Uk_poly_Kn(p, v, p2, ::Type{Float32}) = Uk_poly3(p, v, p2)[2] -Uk_poly_Kn(p, v, p2, ::Type{Float64}) = Uk_poly5(p, v, p2)[2] +Uk_poly_In(p, v, p2, ::Type{Float32}) = Uk_poly5(p, v, p2)[1] +Uk_poly_In(p, v, p2, ::Type{Float64}) = Uk_poly10(p, v, p2)[1] +Uk_poly_Kn(p, v, p2, ::Type{Float32}) = Uk_poly5(p, v, p2)[2] +Uk_poly_Kn(p, v, p2, ::Type{Float64}) = Uk_poly10(p, v, p2)[2] @inline function split_evalpoly(x, P) # polynomial P must have an even number of terms @@ -113,16 +113,6 @@ Uk_poly_Kn(p, v, p2, ::Type{Float64}) = Uk_poly5(p, v, p2)[2] end end -function Uk_poly3(p, v, p2) - u0 = 1.0 - u1 = evalpoly(p2, (0.125, -0.20833333333333334)) - u2 = evalpoly(p2, (0.0703125, -0.4010416666666667, 0.3342013888888889)) - u3 = evalpoly(p2, (0.0732421875, -0.8912109375, 1.8464626736111112, -1.0258125964506173)) - - Poly = (u0, u1, u2, u3) - - return split_evalpoly(-p/v, Poly) -end function Uk_poly5(p, v, p2) u0 = 1.0 u1 = evalpoly(p2, (0.125, -0.20833333333333334)) diff --git a/src/besseli.jl b/src/besseli.jl index 1841aeb..714d0e1 100644 --- a/src/besseli.jl +++ b/src/besseli.jl @@ -130,26 +130,91 @@ function besseli1x(x::T) where T <: Union{Float32, Float64} return z end +# Modified Bessel functions of the first kind of order nu +# besseli(nu, x) +# +# A numerical routine to compute the modified Bessel function of the first kind I_{ν}(x) [1] +# for real orders and arguments of positive or negative value. The routine is based on several +# publications [2-6] that calculate I_{ν}(x) for positive arguments and orders where +# reflection identities are used to compute negative arguments and orders. +# +# In particular, the reflectance identities for negative noninteger orders I_{−ν}(x) = I_{ν}(x) + 2 / πsin(πν)*Kν(x) +# and for negative integer orders I_{−n}(x) = I_n(x) are used. +# For negative arguments of integer order, In(−x) = (−1)^n In(x) is used and for +# noninteger orders, Iν(−x) = exp(iπν) Iν(x) is used. For negative orders and arguments the previous identities are combined. +# +# The identities are computed by calling the `besseli_positive_args(nu, x)` function which computes I_{ν}(x) +# for positive arguments and orders. For large orders, Debye's uniform asymptotic expansions are used where large arguments (x>>nu) +# a large argument expansion is used. The rest of the values are computed using the power series. + +# [1] https://dlmf.nist.gov/10.40.E1 +# [2] Amos, Donald E. "Computation of modified Bessel functions and their ratios." Mathematics of computation 28.125 (1974): 239-251. +# [3] Gatto, M. A., and J. B. Seery. "Numerical evaluation of the modified Bessel functions I and K." +# Computers & Mathematics with Applications 7.3 (1981): 203-209. +# [4] Temme, Nico M. "On the numerical evaluation of the modified Bessel function of the third kind." +# Journal of Computational Physics 19.3 (1975): 324-337. +# [5] Amos, DEv. "Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order." +# ACM Transactions on Mathematical Software (TOMS) 12.3 (1986): 265-273. +# [6] Segura, Javier, P. Fernández de Córdoba, and Yu L. Ratis. "A code to evaluate modified bessel functions based on thecontinued fraction method." +# Computer physics communications 105.2-3 (1997): 263-272. +# + """ - besseli(nu, x::T) where T <: Union{Float32, Float64} + besseli(x::T) where T <: Union{Float32, Float64} -Modified Bessel function of the first kind of order nu, ``I_{nu}(x)``. -Nu must be real. +Modified Bessel function of the second kind of order nu, ``I_{nu}(x)``. """ -function besseli(nu, x::T) where T <: Union{Float32, Float64} - nu == 0 && return besseli0(x) - nu == 1 && return besseli1(x) - - if x > maximum((T(30), nu^2 / 4)) - return T(besseli_large_argument(nu, x)) - elseif x <= 2 * sqrt(nu + 1) - return T(besseli_small_arguments(nu, x)) - elseif nu < 100 - return T(_besseli_continued_fractions(nu, x)) +function besseli(nu::Real, x::T) where T + isinteger(nu) && return besseli(Int(nu), x) + abs_nu = abs(nu) + abs_x = abs(x) + + if nu >= 0 + if x >= 0 + return besseli_positive_args(abs_nu, abs_x) + else + return cispi(abs_nu) * besseli_positive_args(abs_nu, abs_x) + end else - return T(besseli_large_orders(nu, x)) + if x >= 0 + return besseli_positive_args(abs_nu, abs_x) + 2 / π * sinpi(abs_nu) * besselk_positive_args(abs_nu, abs_x) + else + Iv = besseli_positive_args(abs_nu, abs_x) + Kv = besselk_positive_args(abs_nu, abs_x) + return cispi(abs_nu) * Iv + 2 / π * sinpi(abs_nu) * (cispi(-abs_nu) * Kv - im * π * Iv) + end end end +function besseli(nu::Integer, x::T) where T + abs_nu = abs(nu) + abs_x = abs(x) + sg = iseven(abs_nu) ? 1 : -1 + + if x >= 0 + return besseli_positive_args(abs_nu, abs_x) + else + return sg * besseli_positive_args(abs_nu, abs_x) + end +end + +""" + besseli_positive_args(nu, x::T) where T <: Union{Float32, Float64} + +Modified Bessel function of the first kind of order nu, ``I_{nu}(x)`` for positive arguments. +""" +function besseli_positive_args(nu, x::T) where T <: Union{Float32, Float64} + iszero(nu) && return besseli0(x) + isone(nu) && return besseli1(x) + + # use large argument expansion if x >> nu + besseli_large_argument_cutoff(nu, x) && return besseli_large_argument(nu, x) + + # use uniform debye expansion if x or nu is large + besselik_debye_cutoff(nu, x) && return T(besseli_large_orders(nu, x)) + + # for rest of values use the power series + return besseli_power_series(nu, x) +end """ besselix(nu, x::T) where T <: Union{Float32, Float64} @@ -158,19 +223,31 @@ Scaled modified Bessel function of the first kind of order nu, ``I_{nu}(x)*e^{-x Nu must be real. """ function besselix(nu, x::T) where T <: Union{Float32, Float64} - nu == 0 && return besseli0x(x) - nu == 1 && return besseli1x(x) - - if x > maximum((T(30), nu^2 / 4)) - return T(besseli_large_argument_scaled(nu, x)) - elseif x <= 2 * sqrt(nu + 1) - return T(besseli_small_arguments(nu, x)) * exp(-x) - elseif nu < 100 - return T(_besseli_continued_fractions_scaled(nu, x)) - else - return besseli_large_orders_scaled(nu, x) - end + iszero(nu) && return besseli0x(x) + isone(nu) && return besseli1x(x) + + # use large argument expansion if x >> nu + besseli_large_argument_cutoff(nu, x) && return besseli_large_argument_scaled(nu, x) + + # use uniform debye expansion if x or nu is large + besselik_debye_cutoff(nu, x) && return T(besseli_large_orders_scaled(nu, x)) + + # for rest of values use the power series + return besseli_power_series(nu, x) * exp(-x) end + +##### +##### Debye's uniform asymptotic for I_{nu}(x) +##### + +# Implements the uniform asymptotic expansion https://dlmf.nist.gov/10.41 +# In general this is valid when either x or nu is gets large +# see the file src/U_polynomials.jl for more details +""" + besseli_large_orders(nu, x::T) + +Debey's uniform asymptotic expansion for large order valid when v-> ∞ or x -> ∞ +""" function besseli_large_orders(v, x::T) where T <: Union{Float32, Float64} S = promote_type(T, Float64) x = S(x) @@ -183,6 +260,7 @@ function besseli_large_orders(v, x::T) where T <: Union{Float32, Float64} return coef*Uk_poly_In(p, v, p2, T) end + function besseli_large_orders_scaled(v, x::T) where T <: Union{Float32, Float64} S = promote_type(T, Float64) x = S(x) @@ -195,39 +273,18 @@ function besseli_large_orders_scaled(v, x::T) where T <: Union{Float32, Float64} return T(coef*Uk_poly_In(p, v, p2, T)) end -function _besseli_continued_fractions(nu, x::T) where T - S = promote_type(T, Float64) - xx = S(x) - knum1, knu = besselk_up_recurrence(xx, besselk1(xx), besselk0(xx), 1, nu-1) - # if knu or knum1 is zero then besseli will likely overflow - (iszero(knu) || iszero(knum1)) && return throw(DomainError(x, "Overflow error")) - return 1 / (x * (knum1 + knu / steed(nu, x))) -end -function _besseli_continued_fractions_scaled(nu, x::T) where T - S = promote_type(T, Float64) - xx = S(x) - knum1, knu = besselk_up_recurrence(xx, besselk1x(xx), besselk0x(xx), 1, nu-1) - # if knu or knum1 is zero then besseli will likely overflow - (iszero(knu) || iszero(knum1)) && return throw(DomainError(x, "Overflow error")) - return 1 / (x * (knum1 + knu / steed(nu, x))) -end -function steed(n, x::T) where T - MaxIter = 1000 - xinv = inv(x) - xinv2 = 2 * xinv - d = x / (n + n) - a = d - h = a - b = muladd(2, n, 2) * xinv - for _ in 1:MaxIter - d = inv(b + d) - a *= muladd(b, d, -1) - h = h + a - b = b + xinv2 - abs(a / h) <= eps(T) && break - end - return h -end + +##### +##### Large argument expansion (x>>nu) for I_{nu}(x) +##### + +# Implements the uniform asymptotic expansion https://dlmf.nist.gov/10.40.E1 +# In general this is valid when x > nu^2 +""" + besseli_large_orders(nu, x::T) + +Debey's uniform asymptotic expansion for large order valid when v-> ∞ or x -> ∞ +""" function besseli_large_argument(v, z::T) where T MaxIter = 1000 a = exp(z / 2) @@ -263,26 +320,71 @@ function besseli_large_argument_scaled(v, z::T) where T end return res * coef end +besseli_large_argument_cutoff(nu, x) = x > maximum((30.0, nu^2 / 6)) -function besseli_small_arguments(v, z::T) where T - S = promote_type(T, Float64) - x = S(z) - if v < 20 - coef = (x / 2)^v / factorial(v) - else - vinv = inv(v) - coef = sqrt(vinv / (2 * π)) * MathConstants.e^(v * (log(x / (2 * v)) + 1)) - coef *= evalpoly(vinv, (1, -1/12, 1/288, 139/51840, -571/2488320, -163879/209018880, 5246819/75246796800, 534703531/902961561600)) +##### +##### Power series for I_{nu}(x) +##### + +# Use power series form of I_v(x) which is generally accurate across all values though slower for larger x +# https://dlmf.nist.gov/10.25.E2 +""" + besseli_power_series(nu, x::T) where T <: Float64 + +Computes ``I_{nu}(x)`` using the power series for any value of nu. +""" +function besseli_power_series(v, x::T) where T + MaxIter = 3000 + out = zero(T) + xs = (x/2)^v + a = xs / gamma(v + one(T)) + t2 = (x/2)^2 + for i in 0:MaxIter + out += a + abs(a) < eps(T) * abs(out) && break + a *= inv((v + i + one(T)) * (i + one(T))) * t2 end + return out +end + +#= +# the following is a deprecated version of the continued fraction approach +# using K0 and K1 as starting values then forward recurrence up till nu +# then using the wronskian to getting I_{nu} +# in general this method is slow and depends on starting values of K0 and K1 +# which is not very flexible for arbitary orders +function _besseli_continued_fractions(nu, x::T) where T + S = promote_type(T, Float64) + xx = S(x) + knum1, knu = besselk_up_recurrence(xx, besselk1(xx), besselk0(xx), 1, nu-1) + # if knu or knum1 is zero then besseli will likely overflow + (iszero(knu) || iszero(knum1)) && return throw(DomainError(x, "Overflow error")) + return 1 / (x * (knum1 + knu / steed(nu, x))) +end +function _besseli_continued_fractions_scaled(nu, x::T) where T + S = promote_type(T, Float64) + xx = S(x) + knum1, knu = besselk_up_recurrence(xx, besselk1x(xx), besselk0x(xx), 1, nu-1) + # if knu or knum1 is zero then besseli will likely overflow + (iszero(knu) || iszero(knum1)) && return throw(DomainError(x, "Overflow error")) + return 1 / (x * (knum1 + knu / steed(nu, x))) +end +function steed(n, x::T) where T MaxIter = 1000 - out = one(S) - zz = x^2 / 4 - a = one(S) - for k in 1:MaxIter - a *= zz / (k * (k + v)) - out += a - a <= eps(T) && break + xinv = inv(x) + xinv2 = 2 * xinv + d = x / (n + n) + a = d + h = a + b = muladd(2, n, 2) * xinv + for _ in 1:MaxIter + d = inv(b + d) + a *= muladd(b, d, -1) + h = h + a + b = b + xinv2 + abs(a / h) <= eps(T) && break end - return coef * out + return h end +=# diff --git a/src/besselk.jl b/src/besselk.jl index 7ca1dab..7a8caa5 100644 --- a/src/besselk.jl +++ b/src/besselk.jl @@ -145,42 +145,127 @@ function besselk1x(x::T) where T <: Union{Float32, Float64} return muladd(evalpoly(inv(x), P3_k1(T)), inv(evalpoly(inv(x), Q3_k1(T))), Y2_k1(T)) / sqrt(x) end end -#= -If besselk0(x) or besselk1(0) is equal to zero -this will underflow and always return zero even if besselk(x, nu) -is larger than the smallest representing floating point value. -In other words, for large values of x and small to moderate values of nu, -this routine will underflow to zero. -For small to medium values of x and large values of nu this will overflow and return Inf. -=# + +# Modified Bessel functions of the second kind of order nu +# besselk(nu, x) +# +# A numerical routine to compute the modified Bessel function of the second kind K_{ν}(x) [1] +# for real orders and arguments of positive or negative value. The routine is based on several +# publications [2-8] that calculate K_{ν}(x) for positive arguments and orders where +# reflection identities are used to compute negative arguments and orders. +# +# In particular, the reflectance identities for negative orders I_{−ν}(x) = I_{ν}(x). +# For negative arguments of integer order, Kn(−x) = (−1)^n Kn(x) − im * π In(x) is used and for +# noninteger orders, Kν(−x) = exp(−iπν)*Kν(x) − im π Iν(x) is used. For negative orders and arguments the previous identities are combined. +# +# The identities are computed by calling the `besseli_positive_args(nu, x)` function which computes K_{ν}(x) +# for positive arguments and orders. For large orders, Debye's uniform asymptotic expansions are used. +# For small value and when nu > ~x the power series is used. The rest of the values are computed using slightly different methods. +# The power series for besseli is modified to give both I_{v} and I_{v-1} where the ratio K_{v+1} / K_{v} is computed using continued fractions [8]. +# The wronskian connection formula is then used to compute K_v. + +# [1] http://dlmf.nist.gov/10.27.E4 +# [2] Amos, Donald E. "Computation of modified Bessel functions and their ratios." Mathematics of computation 28.125 (1974): 239-251. +# [3] Gatto, M. A., and J. B. Seery. "Numerical evaluation of the modified Bessel functions I and K." +# Computers & Mathematics with Applications 7.3 (1981): 203-209. +# [4] Temme, Nico M. "On the numerical evaluation of the modified Bessel function of the third kind." +# Journal of Computational Physics 19.3 (1975): 324-337. +# [5] Amos, DEv. "Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order." +# ACM Transactions on Mathematical Software (TOMS) 12.3 (1986): 265-273. +# [6] Segura, Javier, P. Fernández de Córdoba, and Yu L. Ratis. "A code to evaluate modified bessel functions based on thecontinued fraction method." +# Computer physics communications 105.2-3 (1997): 263-272. +# [7] Geoga, Christopher J., et al. "Fitting Mat\'ern Smoothness Parameters Using Automatic Differentiation." +# arXiv preprint arXiv:2201.00090 (2022). +# [8] Cuyt, A. A., Petersen, V., Verdonk, B., Waadeland, H., & Jones, W. B. (2008). +# Handbook of continued fractions for special functions. Springer Science & Business Media. +# + """ besselk(x::T) where T <: Union{Float32, Float64} Modified Bessel function of the second kind of order nu, ``K_{nu}(x)``. """ -function besselk(nu, x::T) where T <: Union{Float32, Float64, BigFloat} - T == Float32 ? branch = 20 : branch = 50 - if nu < branch - return besselk_up_recurrence(x, besselk1(x), besselk0(x), 1, nu)[1] +function besselk(nu::Real, x::T) where T + isinteger(nu) && return besselk(Int(nu), x) + abs_nu = abs(nu) + abs_x = abs(x) + + if x >= 0 + return besselk_positive_args(abs_nu, abs_x) else - return besselk_large_orders(nu, x) + return cispi(-abs_nu)*besselk_positive_args(abs_nu, abs_x) - besseli_positive_args(abs_nu, abs_x) * im * π + end +end +function besselk(nu::Integer, x::T) where T + abs_nu = abs(nu) + abs_x = abs(x) + sg = iseven(abs_nu) ? 1 : -1 + + if x >= 0 + return besselk_positive_args(abs_nu, abs_x) + else + return sg * besselk_positive_args(abs_nu, abs_x) - im * π * besseli_positive_args(abs_nu, abs_x) end end """ - besselk(x::T) where T <: Union{Float32, Float64} + besselk_positive_args(x::T) where T <: Union{Float32, Float64} + +Modified Bessel function of the second kind of order nu, ``K_{nu}(x)`` valid for postive arguments and orders. +""" +function besselk_positive_args(nu, x::T) where T <: Union{Float32, Float64} + iszero(x) && return T(Inf) + + # dispatch to avoid uniform expansion when nu = 0 + iszero(nu) && return besselk0(x) + + # use uniform debye expansion if x or nu is large + besselik_debye_cutoff(nu, x) && return besselk_large_orders(nu, x) + + # for integer nu use forward recurrence starting with K_0 and K_1 + isinteger(nu) && return besselk_up_recurrence(x, besselk1(x), besselk0(x), 1, nu)[1] + + # for small x and nu > x use power series + besselk_power_series_cutoff(nu, x) && return besselk_power_series(nu, x) + + # for rest of values use the continued fraction approach + return besselk_continued_fraction(nu, x) +end +""" + besselkx(x::T) where T <: Union{Float32, Float64} Scaled modified Bessel function of the second kind of order nu, ``K_{nu}(x)*e^{x}``. """ -function besselkx(nu::Int, x::T) where T <: Union{Float32, Float64} - T == Float32 ? branch = 20 : branch = 50 - if nu < branch - return besselk_up_recurrence(x, besselk1x(x), besselk0x(x), 1, nu)[1] - else - return besselk_large_orders_scaled(nu, x) - end +function besselkx(nu, x::T) where T <: Union{Float32, Float64} + # dispatch to avoid uniform expansion when nu = 0 + iszero(nu) && return besselk0x(x) + + # use uniform debye expansion if x or nu is large + besselik_debye_cutoff(nu, x) && return besselk_large_orders_scaled(nu, x) + + # for integer nu use forward recurrence starting with K_0 and K_1 + isinteger(nu) && return besselk_up_recurrence(x, besselk1x(x), besselk0x(x), 1, nu)[1] + + # for small x and nu > x use power series + besselk_power_series_cutoff(nu, x) && return besselk_power_series(nu, x) * exp(x) + + # for rest of values use the continued fraction approach + return besselk_continued_fraction(nu, x) * exp(x) end -function besselk_large_orders(v, x::T) where T <: Union{Float32, Float64, BigFloat} + +##### +##### Debye's uniform asymptotic for K_{nu}(x) +##### + +# Implements the uniform asymptotic expansion https://dlmf.nist.gov/10.41 +# In general this is valid when either x or nu is gets large +# see the file src/U_polynomials.jl for more details +""" + besselk_large_orders(nu, x::T) + +Debey's uniform asymptotic expansion for large order valid when v-> ∞ or x -> ∞ +""" +function besselk_large_orders(v, x::T) where T S = promote_type(T, Float64) x = S(x) z = x / v @@ -192,7 +277,7 @@ function besselk_large_orders(v, x::T) where T <: Union{Float32, Float64, BigFlo return T(coef*Uk_poly_Kn(p, v, p2, T)) end -function besselk_large_orders_scaled(v, x::T) where T <: Union{Float32, Float64, BigFloat} +function besselk_large_orders_scaled(v, x::T) where T S = promote_type(T, Float64) x = S(x) z = x / v @@ -203,4 +288,125 @@ function besselk_large_orders_scaled(v, x::T) where T <: Union{Float32, Float64, p2 = v^2/fma(max(v,x), max(v,x), min(v,x)^2) return T(coef*Uk_poly_Kn(p, v, p2, T)) -end \ No newline at end of file +end +besselik_debye_cutoff(nu, x::Float64) = nu > 25.0 || x > 35.0 +besselik_debye_cutoff(nu, x::Float32) = nu > 15.0 || x > 20.0 + +##### +##### Continued fraction with Wronskian for K_{nu}(x) +##### + +# Use the ratio K_{nu+1}/K_{nu} and I_{nu-1}, I_{nu} +# along with the Wronskian (NIST https://dlmf.nist.gov/10.28.E2) to calculate K_{nu} +# Inu and Inum1 are generated from the power series form where K_{nu_1}/K_{nu} +# is calculated with continued fractions. +# The continued fraction K_{nu_1}/K_{nu} method is a slightly modified form +# https://github.com/heltonmc/Bessels.jl/issues/17#issuecomment-1195726642 by @cgeoga +# +# It is also possible to use continued fraction to calculate inu/inmu1 such as +# inum1 = besseli_power_series(nu-1, x) +# H_inu = steed(nu, x) +# inu = besseli_power_series(nu, x)#inum1 * H_inu +# but it appears to be faster to modify the series to calculate both Inu and Inum1 + +function besselk_continued_fraction(nu, x) + inu, inum1 = besseli_power_series_inu_inum1(nu, x) + H_knu = besselk_ratio_knu_knup1(nu-1, x) + return 1 / (x * (inum1 + inu / H_knu)) +end + +# a modified version of the I_{nu} power series to compute both I_{nu} and I_{nu-1} +# use this along with the continued fractions for besselk +function besseli_power_series_inu_inum1(v, x::T) where T + MaxIter = 3000 + out = zero(T) + out2 = zero(T) + x2 = x / 2 + xs = x2^v + gmx = xs / gamma(v) + a = gmx / v + b = gmx / x2 + t2 = x2 * x2 + for i in 0:MaxIter + out += a + out2 += b + abs(a) < eps(T) * abs(out) && break + a *= inv((v + i + one(T)) * (i + one(T))) * t2 + b *= inv((v + i) * (i + one(T))) * t2 + end + return out, out2 +end + +# computes K_{nu+1}/K_{nu} using continued fractions and the modified Lentz method +# generally slow to converge for small x +function besselk_ratio_knu_knup1(v, x::T) where T + MaxIter = 1000 + (hn, Dn, Cn) = (1e-50, zero(v), 1e-50) + + jf = one(T) + vv = v * v + for _ in 1:MaxIter + an = (vv - ((2*jf - 1)^2) * T(0.25)) + bn = 2 * (x + jf) + Cn = an / Cn + bn + Dn = inv(muladd(an, Dn, bn)) + del = Dn * Cn + hn *= del + abs(del - 1) < eps(T) && break + jf += one(T) + end + xinv = inv(x) + return xinv * (v + x + 1/2) + xinv * hn +end + +##### +##### Power series for K_{nu}(x) +##### + +# Use power series form of K_v(x) which is accurate for small x (x<2) or when nu > x +# We use the form as described by Equation 3.2 from reference [7]. +# This method was originally contributed by @cgeoga https://github.com/cgeoga/BesselK.jl/blob/main/src/besk_ser.jl +# A modified form appears below. See more discussion at https://github.com/heltonmc/Bessels.jl/pull/29 +# This is only valid for noninteger orders (nu) and no checks are performed. +# +""" + besselk_power_series(nu, x::T) where T <: Float64 + +Computes ``K_{nu}(x)`` using the power series when nu is not an integer. +In general, this is most accurate for small arguments and when nu > x. +No checks are performed on nu so this is not accurate when nu is an integer. +""" +function besselk_power_series(v, x::T) where T + MaxIter = 1000 + z = x / 2 + zz = z * z + + logz = log(z) + xd2_v = exp(v*logz) + xd2_nv = inv(xd2_v) + + # use the reflection identify to calculate gamma(-v) + # use relation gamma(v)*v = gamma(v+1) to avoid two gamma calls + gam_v = gamma(v) + xp1 = abs(v) + one(T) + gam_nv = π / (sinpi(xp1) * gam_v * v) + gam_1mv = -gam_nv * v + gam_1mnv = gam_v * v + + _t1 = gam_v * xd2_nv * gam_1mv + _t2 = gam_nv * xd2_v * gam_1mnv + (xd2_pow, fact_k, out) = (one(T), one(T), zero(T)) + for k in 0:MaxIter + t1 = xd2_pow * T(0.5) + tmp = muladd(_t1, gam_1mnv, _t2 * gam_1mv) + tmp *= inv(gam_1mv * gam_1mnv * fact_k) + term = t1 * tmp + out += term + abs(term / out) < eps(T) && break + (gam_1mnv, gam_1mv) = (gam_1mnv*(one(T) + v + k), gam_1mv*(one(T) - v + k)) + xd2_pow *= zz + fact_k *= k + one(T) + end + return out +end +besselk_power_series_cutoff(nu, x) = x < 2.0 || nu > 1.6x - 1.0 diff --git a/src/gamma.jl b/src/gamma.jl index 56283a1..488ad00 100644 --- a/src/gamma.jl +++ b/src/gamma.jl @@ -8,6 +8,8 @@ function gamma(x) return _gamma(x) end end +# only have a Float64 implementations +gamma(x::Float32) = Float32(gamma(Float64(x))) function _gamma(x) if x > 11.5 return large_gamma(x) diff --git a/test/besseli_test.jl b/test/besseli_test.jl index 6a5bcb6..d25f3dd 100644 --- a/test/besseli_test.jl +++ b/test/besseli_test.jl @@ -90,4 +90,40 @@ t = [besseli(m, x) for m in m, x in x] t = [besselix(m, x) for m in m, x in x] @test t[10] isa Float64 @test t ≈ [SpecialFunctions.besselix(m, x) for m in m, x in x] - \ No newline at end of file + +## Tests for besselk + +## test all numbers and orders for 0