-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathrealsense.py
151 lines (119 loc) · 4.65 KB
/
realsense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import division
import pyrealsense2 as rs
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2
from util import *
from darknet import Darknet
from preprocess import prep_image, inp_to_image
import pandas as pd
import random
import pickle as pkl
def get_test_input(input_dim, CUDA):
img = cv2.imread("imgs/messi.jpg")
img = cv2.resize(img, (input_dim, input_dim))
img_ = img[:,:,::-1].transpose((2,0,1))
img_ = img_[np.newaxis,:,:,:]/255.0
img_ = torch.from_numpy(img_).float()
img_ = Variable(img_)
if CUDA:
img_ = img_.cuda()
return img_
def prep_image(img, inp_dim):
"""
Prepare image for inputting to the neural network.
Returns a Variable
"""
orig_im = img
dim = orig_im.shape[1], orig_im.shape[0]
img = cv2.resize(orig_im, (inp_dim, inp_dim))
img_ = img[:,:,::-1].transpose((2,0,1)).copy()
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
return img_, orig_im, dim
def write(x, img, classes, your_class):
c1 = tuple(x[1:3].int())
c2 = tuple(x[3:5].int())
cls = int(x[-1])
label = "{0}".format(classes[cls])
if label in your_class:
color = (0,255,0)
cv2.rectangle(img, c1, c2,color, 1)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0]
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
cv2.rectangle(img, c1, c2,color, -1)
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1);
return img
def yolo_output(frame, model, your_class, confidence, nms_thesh, CUDA, inp_dim):
"""
Get the labeled image and the bounding box coordinates.
"""
num_classes = 80
bbox_attrs = 5 + num_classes
img, orig_im, dim = prep_image(frame, inp_dim)
im_dim = torch.FloatTensor(dim).repeat(1,2)
if CUDA:
im_dim = im_dim.cuda()
img = img.cuda()
output = model(Variable(img), CUDA)
output = write_results(output, confidence, num_classes, nms = True, nms_conf = nms_thesh)
output[:,1:5] = torch.clamp(output[:,1:5], 0.0, float(inp_dim))/inp_dim
# im_dim = im_dim.repeat(output.size(0), 1)
output[:,[1,3]] *= frame.shape[1]
output[:,[2,4]] *= frame.shape[0]
classes = load_classes('data/coco.names')
box = list([])
list(map(lambda x: write(x, orig_im, classes, your_class), output))
for i in range(output.shape[0]):
if int(output[i, -1]) == 0:
c1 = tuple(output[i,1:3].int())
c2 = tuple(output[i,3:5].int())
box.append([c1[0].item(),c1[1].item(), c2[0].item(),c2[1].item()])
return orig_im, box
if __name__ == '__main__':
cfgfile = "cfg/yolov3.cfg"
weightsfile = "yolov3.weights"
confidence = 0.5
nms_thesh = 0.4
CUDA = torch.cuda.is_available()
model = Darknet(cfgfile)
model.load_weights(weightsfile)
model.net_info["height"] = 160
inp_dim = int(model.net_info["height"])
assert inp_dim % 32 == 0
assert inp_dim > 32
if CUDA:
model.cuda()
model.eval()
# Setup Realsense pipeline
pipe = rs.pipeline()
configure = rs.config()
width = 640; height = 480;
configure.enable_stream(rs.stream.depth, width, height, rs.format.z16, 30)
configure.enable_stream(rs.stream.color, width, height, rs.format.rgb8, 30)
dec_filter = rs.decimation_filter () # Decimation - reduces depth frame density
spat_filter = rs.spatial_filter() # Spatial - edge-preserving spatial smoothing
temp_filter = rs.temporal_filter() # Temporal - reduces temporal noise
pipe.start(configure)
align_to = rs.stream.color
align = rs.align(align_to)
while(1):
# temp = pipe.wait_for_frames()
# aligned_frames = align.process(temp)
# depth_frame = aligned_frames.get_depth_frame()
# filtered = dec_filter.process(depth_frame)
# filtered = spat_filter.process(fisltered)
# filtered = temp_filter.process(filtered)
# aligned_depth_frame = np.asanyarray(filtered.get_data(),dtype=np.uint8) # aligned_depth_frame is a 640x480 depth image
# color_frame = np.asanyarray(aligned_frames.get_color_frame().get_data(),dtype=np.uint8)
img, box = yolo_output(color_frame,model,['cell phone', 'person'], confidence, nms_thesh, CUDA, inp_dim)
print('BOX:', box)
cv2.imshow("frame",cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
print(np.max(aligned_depth_frame), qnp.min(aligned_depth_frame))
cv2.imshow("depth",aligned_depth_frame)
key = cv2.waitKey(1)
# print(box)
if key & 0xFF == ord('q'):
break