-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvat2ultralytics.py
239 lines (196 loc) · 8.36 KB
/
cvat2ultralytics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
from typing import Optional
import argparse
import json
import cv2
from ruamel.yaml import YAML
from lxml import etree
from collections import OrderedDict
from tqdm import tqdm
import shutil
from natsort import natsorted
def cvat2ultralytics(video_path: str, annotation_path: str,
dataset: str, skip: int,
label2index: Optional[dict] = None) -> None:
"""
Convert CVAT annotations to Ultralytics YOLO dataset.
Parameters:
video_path - str. Path to the folder containing video mp4 files.
annotation_path - str. Path to the folder containing annotation xml files.
dataset - str. Path to the output dataset files.
skip - int. Process one out of skip number of frames.
label2index - dict [optional]. Mapping of ethogram labels to integers.
"""
# Create a YOLO dataset structure.
dataset_file = f"""
path: {dataset}
train: images/train
val: images/val
test: images/test
nc: 1
names: ['Animal']
"""
if os.path.exists(f"{dataset}"):
shutil.rmtree(f"{dataset}")
with open(f"{dataset}.yaml", "w") as file:
yaml = YAML(typ='rt')
yaml.preserve_quotes = True
data = yaml.load(dataset_file)
yaml.dump(data, file)
if not os.path.exists(f"{dataset}/images/train"):
os.makedirs(f"{dataset}/images/train")
if not os.path.exists(f"{dataset}/images/val"):
os.makedirs(f"{dataset}/images/val")
if not os.path.exists(f"{dataset}/images/test"):
os.makedirs(f"{dataset}/images/test")
if not os.path.exists(f"{dataset}/labels/train"):
os.makedirs(f"{dataset}/labels/train")
if not os.path.exists(f"{dataset}/labels/val"):
os.makedirs(f"{dataset}/labels/val")
if not os.path.exists(f"{dataset}/labels/test"):
os.makedirs(f"{dataset}/labels/test")
if label2index is None:
label2index = {
"Grevy": 0,
"Zebra": 0,
"Baboon": 1,
"Giraffe": 2
}
print("Process CVAT annotations...")
videos = []
annotations = []
for root, dirs, files in os.walk(annotation_path):
for file in files:
video_name = os.path.join(video_path + root[len(annotation_path):], os.path.splitext(file)[0])
if file.endswith(".xml"):
if os.path.exists(video_name + ".MP4"):
videos.append(video_name + ".MP4")
else:
videos.append(video_name + ".mp4")
annotations.append(os.path.join(root, file))
for i, (video, annotation) in enumerate(zip(videos, annotations)):
print(f"{i + 1}/{len(annotations)}:", flush=True)
if not os.path.exists(video):
print(f"Path {video} does not exist.")
continue
if not os.path.exists(annotation):
print(f"Path {annotation} does not exist.")
continue
# Parse CVAT for video 1.1 annotation file.
root = etree.parse(annotation).getroot()
name = os.path.splitext(video.split("/")[-1])[0]
if root.find("meta").find("task") is not None:
annotated_size = int("".join(root.find("meta").find("task").find("size").itertext()))
width = int("".join(root.find("meta").find("task").find("original_size").find("width").itertext()))
height = int("".join(root.find("meta").find("task").find("original_size").find("height").itertext()))
else:
annotated_size = int("".join(root.find("meta").find("job").find("size").itertext()))
width = int("".join(root.find("meta").find("original_size").find("width").itertext()))
height = int("".join(root.find("meta").find("original_size").find("height").itertext()))
annotated = dict()
track2end = {}
for track in root.iterfind("track"):
track_id = int(track.attrib["id"])
label = label2index[track.attrib["label"].lower().capitalize()]
for box in track.iter("box"):
frame_id = int(box.attrib["frame"])
keyframe = int(box.attrib["keyframe"])
if keyframe == 1:
track2end[track_id] = frame_id
for track in root.iterfind("track"):
track_id = int(track.attrib["id"])
label = label2index[track.attrib["label"].lower().capitalize()]
for box in track.iter("box"):
frame_id = int(box.attrib["frame"])
if annotated.get(frame_id) is None:
annotated[frame_id] = OrderedDict()
if frame_id <= track2end[track_id]:
x_start = float(box.attrib["xtl"])
y_start = float(box.attrib["ytl"])
x_end = float(box.attrib["xbr"])
y_end = float(box.attrib["ybr"])
x_center = (x_start + (x_end - x_start) / 2) / width
y_center = (y_start + (y_end - y_start) / 2) / height
w = (x_end - x_start) / width
h = (y_end - y_start) / height
annotated[frame_id][track_id] = [label, x_center, y_center, w, h]
index = 0
vc = cv2.VideoCapture(video)
pbar = tqdm(total=annotated_size)
while vc.isOpened():
returned, frame = vc.read()
saved = False
if returned:
if index > max(track2end.values()):
pbar.update(annotated_size - index)
break
if annotated.get(index) is not None:
if index % skip == 0:
for box in annotated[index].values():
if not saved:
cv2.imwrite(f"{dataset}/images/train/{name}_{index}.jpg", frame)
saved = True
with open(f"{dataset}/labels/train/{name}_{index}.txt", "a") as file:
file.write(f"{box[0]} {box[1]:.6f} {box[2]:.6f} {box[3]:.6f} {box[4]:.6f}\n")
index += 1
pbar.update(1)
else:
break
pbar.close()
vc.release()
print("Distribute train, val, and test...")
images = natsorted([file for file in os.listdir(f"{dataset}/images/train") if
os.path.isfile(os.path.join(f"{dataset}/images/train", file))])
labels = natsorted([file for file in os.listdir(f"{dataset}/labels/train") if
os.path.isfile(os.path.join(f"{dataset}/labels/train", file))])
for file in tqdm(images[int(len(images) * 0.8):int(len(images) * 0.87)]):
shutil.move(f"{dataset}/images/train/{file}", f"{dataset}/images/val/{file}")
for file in tqdm(labels[int(len(labels) * 0.8):int(len(labels) * 0.87)]):
shutil.move(f"{dataset}/labels/train/{file}", f"{dataset}/labels/val/{file}")
for file in tqdm(images[int(len(images) * 0.87):]):
shutil.move(f"{dataset}/images/train/{file}", f"{dataset}/images/test/{file}")
for file in tqdm(labels[int(len(labels) * 0.87):]):
shutil.move(f"{dataset}/labels/train/{file}", f"{dataset}/labels/test/{file}")
def parse_args() -> argparse.Namespace:
local_parser = argparse.ArgumentParser()
local_parser.add_argument(
"--video",
type=str,
help="path to folder containing video mp4 files",
required=True
)
local_parser.add_argument(
"--annotation",
type=str,
help="path to folder containing annotation xml files",
required=True
)
local_parser.add_argument(
"--dataset",
type=str,
help="path to output dataset files",
required=True
)
local_parser.add_argument(
"--skip",
type=int,
help="process one out of skip number of frames",
default=10
)
local_parser.add_argument(
"--label2index",
type=str,
help="path to label to index json (default is for zebra, baboon, and giraffe)",
required=False
)
return local_parser.parse_args()
def main() -> None:
args = parse_args()
if args.label2index:
with open(args.label2index, mode="r", encoding="utf-8") as file:
label2index = json.load(file)
else:
label2index = None
cvat2ultralytics(args.video, args.annotation, args.dataset, args.skip, label2index)
if __name__ == "__main__":
main()