-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeetlepalozza_code_final.Rmd
220 lines (184 loc) · 9.74 KB
/
beetlepalozza_code_final.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
title: "Beetlepalozza"
author: "Brennan Hays, Alyson East"
date: "`r Sys.Date()`"
output: html_document
---
```{r}
# Load required libraries
library(neonUtilities) # For accessing NEON data
library(dplyr) # For data manipulation
library(tidyr) # For tidying data
# Read in CSV files containing beetle measurements and individual metadata
beetles_measurements <- read.csv("BeetleMeasurements.csv")
beetles_individual_metadata <- read.csv("individual_metadata.csv")
# Generate a list of unique site IDs from the beetle measurements data
unique(beetles_measurements$siteID)
# Calculate the count of rows (measurements) for each site ID
beetles_site_count <- beetles_measurements %>%
group_by(siteID) %>%
summarise(count = n()) # Summarize the counts for each site
```
```{r}
# NEON access token - used for authenticating with NEON's API
NEON_TOKEN<-"eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJhdWQiOiJodHRwczovL2RhdGEubmVvbnNjaWVuY2Uub3JnL2FwaS92MC8iLCJzdWIiOiJhLmVhc3QuZWNvbG9neUBnbWFpbC5jb20iLCJzY29wZSI6InJhdGU6cHVibGljIiwiaXNzIjoiaHR0cHM6Ly9kYXRhLm5lb25zY2llbmNlLm9yZy8iLCJleHAiOjE4ODEyNDQ4NjksImlhdCI6MTcyMzU2NDg2OSwiZW1haWwiOiJhLmVhc3QuZWNvbG9neUBnbWFpbC5jb20ifQ.7_3KNAwtmIVg6pY5ptRw8bvQrHF6wSnzRox2qRZTIsIyoNTJfoHRMo5oMtw-9KAbauIj72npKPtyWZ4l2FugWA"
```
```{r}
# Define reduced list of site IDs for which data will be pulled
beetles_reduced_site <- c('BART', 'BLAN', 'GRSM', 'HARV', 'KONA', 'MLBS', 'NIWO', 'NOGP', 'RMNP', 'SERC', 'STEI', 'STER', 'UNDE')
# Set date range for filtering the data (can be left blank if not needed)
beetles_start_date <- "2018-01"
beetles_end_date <- "2018-12"
# Set time interval for the data in minutes (e.g., 30 minutes)
beetles_timeIndex <- 30
# Define the data product IDs for humidity, temperature, and precipitation data from NEON
humidity_dpID <- "DP1.00098.001"
temperature_IR_dpID <- "DP1.00005.001"
precipitation_dpID <- "DP1.00006.001"
# Download humidity data from NEON for the selected sites and date range
beetles_humidity <- neonUtilities::loadByProduct(
dpID = humidity_dpID,
site = beetles_reduced_site,
startdate = beetles_start_date,
enddate = beetles_end_date,
timeIndex = beetles_timeIndex,
token = NEON_TOKEN
)
# Download temperature data (IR) from NEON for the selected sites and date range
beetles_temperature_IR <- neonUtilities::loadByProduct(
dpID = temperature_IR_dpID,
site = beetles_reduced_site,
startdate = beetles_start_date,
enddate = beetles_end_date,
timeIndex = beetles_timeIndex,
token = NEON_TOKEN
)
# Download precipitation data from NEON for the selected sites and date range
beetles_precipitation <- neonUtilities::loadByProduct(
dpID = precipitation_dpID,
site = beetles_reduced_site,
startdate = beetles_start_date,
enddate = beetles_end_date,
timeIndex = beetles_timeIndex,
token = NEON_TOKEN
)
# Save the downloaded data to local CSV files for later use
write.csv(beetles_humidity$RH_30min, "beetles_humidity.csv")
write.csv(beetles_precipitation$PRIPRE_30min, "beetles_pri_precip.csv")
write.csv(beetles_precipitation$SECPRE_30min, "beetles_sec_precip.csv")
write.csv(beetles_precipitation$THRPRE_30min, "beetles_thr_precip.csv")
write.csv(beetles_temperature_IR$IRBT_30_minute, "beetles_temperature_IR.csv")
```
```{r}
# Read in locally stored CSV of reduced image data (generated in another script: Explore_export_metalist.R)
# This file contains columns: pictureID, NEON_sampleID, siteID, genus, species, scientificName
beetles_meta <- read.csv("Beetle_Meta.csv")
# Extract the plot ID from the NEON_sampleID by taking the first 8 characters
beetles_meta$plot <- substr(beetles_meta$NEON_sampleID, 1, 8)
# Extract the date information from the NEON_sampleID and convert it to date format
beetles_meta$date <- substr(beetles_meta$NEON_sampleID,
(nchar(beetles_meta$NEON_sampleID) - 10 - 7),
(nchar(beetles_meta$NEON_sampleID) - 10))
beetles_meta$date <- as.POSIXct(strptime(beetles_meta$date, format = "%Y%m%d"))
# Convert 'date' column from character to POSIXct (date-time format)
beetles_meta <- beetles_meta %>%
mutate(date = as.POSIXct(date, format = "%Y-%m-%d"))
# Set 'Start_date' as 12 days before 'date' and ensure both Start_date and End_date are in POSIXct format
beetles_meta$Start_date <- as.POSIXct(as.Date(beetles_meta$date) - 12)
beetles_meta$End_date <- beetles_meta$date
# Check the structure and first few rows of beetles_meta
str(beetles_meta)
head(beetles_meta)
```
Abiotic Data Processing:
```{r}
# Display the first few rows of secondary precipitation data (30-min intervals)
head(beetles_precipitation$SECPRE_30min)
# Convert startDateTime to POSIXct format in precipitation and temperature dataframes
precip_sec <- beetles_precipitation$SECPRE_30min
precip_sec$startDateTime <- as.POSIXct(strptime(precip_sec$startDateTime, format = "%Y-%m-%d"))
precip_thr <- beetles_precipitation$THRPRE_30min
precip_thr$startDateTime <- as.POSIXct(strptime(precip_thr$startDateTime, format = "%Y-%m-%d"))
# Sum the secondary precipitation data for each beetle observation
sum_precip_sec <- beetles_meta %>%
rowwise() %>%
mutate(sum_precip_sec = ifelse(length(precip_sec$secPrecipBulk[
precip_sec$siteID == siteID &
precip_sec$startDateTime >= Start_date &
precip_sec$startDateTime <= End_date]) == 0,
NA,
sum(precip_sec$secPrecipBulk[
precip_sec$siteID == siteID &
precip_sec$startDateTime >= Start_date &
precip_sec$startDateTime <= End_date], na.rm = TRUE)))
# Sum the tertiary precipitation data for each beetle observation
sum_precip_thr <- beetles_meta %>%
rowwise() %>%
mutate(sum_precip_thr = ifelse(length(precip_thr$TFPrecipBulk[
precip_thr$siteID == siteID &
precip_thr$startDateTime >= Start_date &
precip_thr$startDateTime <= End_date]) == 0,
NA,
sum(precip_thr$TFPrecipBulk[
precip_thr$siteID == siteID &
precip_thr$startDateTime >= Start_date &
precip_thr$startDateTime <= End_date], na.rm = TRUE)))
# Process and calculate the mean temperature for each beetle observation
temp <- beetles_temperature_IR$IRBT_30_minute
temp$startDateTime <- as.POSIXct(strptime(temp$startDateTime, format = "%Y-%m-%d"))
mean_temp <- beetles_meta %>%
rowwise() %>%
mutate(mean_temp = ifelse(length(temp$bioTempMean[
temp$siteID == siteID &
temp$startDateTime >= Start_date &
temp$startDateTime <= End_date]) == 0,
NA,
mean(temp$bioTempMean[
temp$siteID == siteID &
temp$startDateTime >= Start_date &
temp$startDateTime <= End_date], na.rm = TRUE)))
# Process and calculate the mean humidity for each beetle observation
hum <- beetles_humidity$RH_30min
hum$startDateTime <- as.POSIXct(strptime(hum$startDateTime, format = "%Y-%m-%d"))
mean_hum <- beetles_meta %>%
rowwise() %>%
mutate(mean_hum = ifelse(length(hum$RHMean[
hum$siteID == siteID &
hum$startDateTime >= Start_date &
hum$startDateTime <= End_date]) == 0,
NA,
mean(hum$RHMean[
hum$siteID == siteID &
hum$startDateTime >= Start_date &
hum$startDateTime <= End_date], na.rm = TRUE)))
```
```{r}
#Pull out the summary lines from all of the inefficient calculations in the last chunk
#Put all of this into one dataframe
beetles_full<-cbind(mean_hum, mean_temp[,12], sum_precip_thr[,12], sum_precip_sec[,12])
```
```{r}
# Define a normalization function to scale numeric values between 0 and 1
# This scales the values relative to their minimum and maximum, which is useful for comparisons
normalize <- function(x) {
return((x - min(x)) / (max(x) - min(x)))
}
# Prepare the dataset for normalization by filtering out any rows that have NA or NaN values
# across the columns mean_hum, mean_temp, sum_precip_thr, sum_precip_sec, and date
beetles_full_norm <- beetles_full %>%
filter(if_all(c(mean_hum, mean_temp, sum_precip_thr, sum_precip_sec, date),
~ !is.na(.) & !is.nan(.))) %>%
mutate(
# Convert the 'date' column (which is in date-time format) to numeric format for normalization
# This is done to preserve temporal information for use in ecoPalette analysis
date = normalize(as.numeric(date)),
# Apply the normalize function to scale the columns mean_hum, mean_temp, sum_precip_thr, and sum_precip_sec
# to a range between 0 and 1
across(c(mean_hum, mean_temp, sum_precip_thr, sum_precip_sec),
~ normalize(.))
)
# Create a new column 'date_norm' that stores the normalized date values for future use
beetles_full_norm$date_norm <- beetles_full_norm$date
# Write the normalized dataset to a CSV file for external use or further analysis
write.csv(beetles_full_norm, "./beetles_full_norm.csv")
```