-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.m
1343 lines (1005 loc) · 44.1 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
clc
clear all
close all
%% Goal of the script
% This scripts reproduces the Figures from the article [1]:
% If you use this code, please cite this article:
% [1] Ildar Daminov, Rémy Rigo-Mariani, Raphaël Caire, Anton Prokhorov,
% Marie-Cécile Alvarez-Hérault, "Demand Response Coupled with Dynamic
% Thermal Rating for Increased Transformer Reserve and Lifetime" in Energies
% 2021, https://doi.org/10.3390/en14051378
% Other articles on this topic are available:
% https://www.researchgate.net/profile/Ildar-Daminov-2
% Note that the figures generated in this script and those given in the
% article may differ as latter had been additionally redrawn
% for a publication.
% Each section (Plotting the Figure X) is independent from each other. So
% you may launch the entire script (using the button "Run") to get all
% figures at one moment or you may launch a special section (using the
% button "Run Section" at the top)to get a specific figure
% Execution time of entire script ≈ 15 min
tic
%% Plotting the Figure 1
% Figure name: Scope of the paper with regard to the literature survey.
% Figure 1 in the article [1] was ploted without using MATLAB
%% Plotting the Figure 2
% Figure name: Case study—(a) outdoor secondary substation; (b) hourly
% load in kilovolt ampere (kVA) and monthly maximum ambient temperature
% in Grenoble, France
% Figure 2 a in the article [1] was ploted without using MATLAB
% Figure2 (b) is plotted as follows
% Load aggregated power rpofiles of houses simulated via the application
% House Load % https://fr.mathworks.com/matlabcentral/fileexchange/63375-house-load-electricity
% for the profile of ambient temperature in grenoble France (see AMB)
load('Aggregated_load_profile_100_houses.mat') % in W!
Load_agg=Load_agg/1000; % kVA, cosphi=1
load('Ambient_temperature_Grenoble.mat') % in °C
% Note that ambient temperature was processed.
% Prepare a time vector
t1 = datetime(2019,1,1,0,0,0,'Format','HH:SS');
t2 = datetime(2019,12,31,23,59,0,'Format','HH:SS');
time = t1:minutes(1):t2; time=time';
% Create figure
figure('InvertHardcopy','off','Color',[1 1 1],'WindowState','maximized');
% Create axes
axes1 = axes('Position',...
[0.102707749766573 0.11 0.782212885154062 0.858973747016706]);
hold(axes1,'on');
colororder([0 0 0]);
% Activate the left side of the axes
yyaxis(axes1,'left');
% Create plot
plot(time,Load_agg,'DisplayName','Hour load, kVA','LineWidth',1,...
'Color',[0 0.4470 0.7410]);
% Create ylabel
ylabel('Transformer load, kVA');
% Preserve the Y-limits of the axes
% ylim(axes1,[0 450]);
% Set the remaining axes properties
set(axes1,'YColor',[0 0.447058823529412 0.741176470588235]);
% Activate the right side of the axes
yyaxis(axes1,'right');
% Create plot
plot(time,AMB,'DisplayName','Month maximum of ambient temperature,°C',...
'LineWidth',3,'Color',[0.8500 0.3250 0.0980]);
% Create ylabel
ylabel('Ambient temperature, °C');
% Preserve the Y-limits of the axes
% ylim(axes1,[15 40]);
% Set the remaining axes properties
set(axes1,'YColor',[0.85 0.325 0.098]);
% Preserve the Z-limits of the axes
% zlim(axes1,[-1 0]);
box(axes1,'on');
hold(axes1,'off');
% Set the remaining axes properties
set(axes1,'FontSize',20,'GridColor',[0 0.447058823529412 0.741176470588235]);
% Create legend
legend1 = legend(axes1,'show');
set(legend1,...
'Position',[0.369894400614767 0.505554305650581 0.336848965572814 0.0943818897383089],...
'FontSize',18,...
'EdgeColor',[1 1 1]);
%% Plotting the Figure 3
% Figure name: Preliminary thermal results for yearly simulation: load
% growing from 1% to 100% of nominal rating (reserve in p.u.)
clc;clear all % clear a command window and a workspace
% Load aggregated power rpofiles of houses simulated via the application
% House Load % https://fr.mathworks.com/matlabcentral/fileexchange/63375-house-load-electricity
% for the profile of ambient temperature in grenoble France (see AMB)
load('Aggregated_load_profile_100_houses.mat') % in W!
Load_agg=Load_agg/1000; % kVA, cosphi=1
load('Ambient_temperature_Grenoble.mat') % in °C
% Note that ambient temperature was processed.
% Prepapre the data for thermal simulations of distribution transformer
Nominal_rating=500; % kVA
PUL_init=Load_agg/Nominal_rating; % Initial Per Unit Load (PUL)
Reserve_margins=0.01:0.01:1; % load growth pu = reserve values
% Perform thermal simulations
for given_reserve=1:length(Reserve_margins)
% Select the reserve for study
studied_reserve=Reserve_margins(given_reserve);
% Reconstruct the load profile in pu for studied_reserve
PUL=PUL_init+studied_reserve;
% Find HST, TOT and AEQ
[HST_max,TOT_max,AEQ,~,~]=distribution_transformer(PUL,AMB);
% Save results
Results.HST_max(given_reserve,1)=HST_max;
Results.TOT_max(given_reserve,1)=TOT_max;
Results.AEQ(given_reserve,1)=AEQ;
Results.Load_max(given_reserve,1)=max(PUL);
end % end of "for given_reserve=1:length(Reserve_margins)"
% Create figure
figure1 = figure('InvertHardcopy','off','Color',[1 1 1],'WindowState','maximized');
% Create axes
axes1 = axes('Position',[0.1 0.1 0.636363636363636 0.8]);
hold(axes1,'on');
subplot(3,1,1) % create a top figure out of three
% Plot temperatures
plot1 = plot(Reserve_margins,[Results.TOT_max Results.HST_max],'LineWidth',3);
set(plot1(1),'DisplayName','Maximal TOT, °C','LineStyle','--',...
'Color',[0.847058832645416 0.321568638086319 0.0941176488995552]);
set(plot1(2),'DisplayName','Maximal HST, °C','Color',...
[0.847058832645416 0.321568638086319 0.0941176488995552]);
% Create datatip
datatip(plot1(1),'DataIndex',74,'Location','southeast');
% Create datatip
datatip(plot1(2),'DataIndex',49,'Location','northwest');
% Create datatip
datatip(plot1(2),'DataIndex',29,'Location','northwest');
% Create ylabel
ylabel('Maximal transformer temperature, °C');
% Create xlabel
xlabel('Reserve, pu');
% Show the legend
legend ('show')
subplot(3,1,2) % create a middle figure out of three
% Create line
line1=line(Reserve_margins,Results.Load_max,'DisplayName','Maximal load, pu','LineWidth',3,...
'Color',[0.494117647409439 0.184313729405403 0.556862771511078]);
% Create datatip
datatip(line1,'DataIndex',64);
% Create ylabel
ylabel('Maximal transformer loading,pu');
ylim([0.8,2])
% Create xlabel
xlabel('Reserve, pu');
% Show the legend
legend ('show')
subplot(3,1,3) % create a bottom figure out of three
% Create plot
plot2 = plot(Reserve_margins,Results.AEQ,'DisplayName','Equivalent annual ageing, pu',...
'LineWidth',3,...
'Color',[0.301960796117783 0.745098054409027 0.933333337306976]);
% Create datatip
datatip(plot2,'DataIndex',71,'Location','northwest');
% Create ylabel
ylabel('Equivalent annual ageing, pu');
% Create xlabel
xlabel('Reserve, pu');
% Show the legend
legend ('show')
%% Plotting the Figure 4
% Figure name: Number of days where thermal limits are reached.
clc;clear all % clear a command window and a workspace
% Load aggregated power rpofiles of houses simulated via the application
% House Load % https://fr.mathworks.com/matlabcentral/fileexchange/63375-house-load-electricity
% for the profile of ambient temperature in grenoble France (see AMB)
load('Aggregated_load_profile_100_houses.mat') % in W!
Load_agg=Load_agg/1000; % kVA, cosphi=1
load('Ambient_temperature_Grenoble.mat') % in °C
% Note that ambient temperature was processed. Only monthly maximums
% are kept over the duration of the whole month. This is done to make
% thermal simulations more conservative.
% Prepapre the data for thermal simulations of distribution transformer
Nominal_rating=500; % kVA
PUL_init=Load_agg/Nominal_rating; % Initial Per Unit Load (PUL)
Reserve_margins=0.01:0.01:1.63; % load growth pu = reserve values
% % Perform thermal simulations
% for given_reserve=1:length(Reserve_margins)
%
% % Select the reserve for study
% studied_reserve=Reserve_margins(given_reserve);
%
% % Reconstruct the load profile in pu for studied_reserve
% PUL=PUL_init+studied_reserve;
%
% % Find HST, TOT and AEQ
% [HST_max,TOT_max,AEQ,HST,TOT]=distribution_transformer(PUL,AMB);
%
% % Save results
% Results.HST_max(given_reserve,1)=HST_max;
% Results.TOT_max(given_reserve,1)=TOT_max;
% Results.AEQ(given_reserve,1)=AEQ;
% Results.Load_max(given_reserve,1)=max(PUL);
% Results.PUL{given_reserve,1}=PUL;
% Results.HST{given_reserve,1}=HST;
% Results.TOT{given_reserve,1}=TOT;
%
% if HST_max>120 || TOT_max>105 || max(PUL)>1.5
% [minutes,intervals] = profiles2minutes(PUL,HST,TOT,AEQ);
% Results.minutes{given_reserve,1}=minutes;
% Results.intervals{given_reserve,1}=intervals;
%
% else % no thermal or load violations
%
% Results.minutes{given_reserve,1}=0;
% Results.intervals{given_reserve,1}=0;
% end
% end % end of "for given_reserve=1:length(Reserve_margins)"
load('all_intervals.mat')
Results.intervals=all_intervals;
% Find the longest interval
for given_reserve=1:length(Reserve_margins)
interm_array=Results.intervals{given_reserve,1};
if interm_array==0
% The longest interval is zero
the_longest_interval(given_reserve,1)=0;
% Number of days is zero
days_number(given_reserve,1)=0;
else % if interm_array is not zero
% Calculate the interval lengths
for j=1:length(interm_array(:,1))
interval_lengths(j)=interm_array(j,2)-interm_array(j,1)+1;
end
% Find the longest interval
the_longest_interval(given_reserve,1)=max(interval_lengths);
% Days number with thermal violations
days_number(given_reserve,1)=sum(interval_lengths/1440);
% Delete the variable interval_length
interval_lengths=[];
end % if interm_array==0
end % given_reserve=1:length(Reserve_margins)
% Convert to number of days
the_longest_interval=the_longest_interval/1440;
% Create figure
figure1 = figure('InvertHardcopy','off','Color',[1 1 1],'WindowState','maximized');
plot1=plot(Reserve_margins,[days_number,the_longest_interval],'linewidth',3);
xlabel('Reserve, pu')
ylabel('The number of days')
set(plot1(1),'DisplayName','Days number','LineStyle','-');
set(plot1(2),'DisplayName','The longest interval','LineStyle','--');
legend('show')
%% Plotting the Figure 5
% Figure name: . The procedure for finding the needed Demand Response (DR)
% volume to interconnect the studied reserve
% Figure 5 in the article [1] was ploted without using MATLAB
% UPD (04/04/22): the MATLAB code of this algorithm will be uploaded during
% next two weeks as it requires us doublechecking before sharing it on
% GitHub
%% Plotting the Figure 6
% Figure name: Piece-wise linearization (PWL) process: (a) functions
% fitting and breakpoints; (b) mathematical formulation for function f
clc;clear all % clear a command window and a workspace
% Some thermal characteristics of ONAN distribution transformer per IEC60076-7
delta_theta_or = 55; % Top-oil (in tank) temperature rise in steady state at rated losses (no-load losses + load losses),K
delta_theta_hr = 23; % Hot-spot-to-top-oil (in tank) gradient at rated current, K
R = 5; % Ratio of load losses at rated current to no-load losses
x = 0.8; % Exponential power of total losses versus top-oil (in tank) temperature rise (oil exponent)
y = 1.6; % Exponential power of current versus winding temperature rise (winding exponent)
% Generate/Fit non linear/convex functions in the temperature model
Npt=20; % Number of samples for model fitting
Npwl=6; % Number of PWL segments
Npwl_AEQ=12; % Number of PWL segments for ageing curve
plotoption=1; % plot fitting results - 0 : no - 1 : yes
X=linspace(0, 1.5, Npt); % X=Pgd/NominalRating
% y-axis functions: f1 and f2 (temperature-related curves)
Y_f1=((1+X.^2*R)/(1+R)).^x*delta_theta_or;
Y_f2=X.^y*delta_theta_hr;
% x-axis value for AEQ curve
X_AEQ=0:5:120;
% y-axis function for AEQ
Y_AEQ=2.^((X_AEQ-98)/6);
% Compute the best breakpoints for simple PWL
[Xbkp_f1]=computeXBKPbest(X, Y_f1, Npwl+1, plotoption);
[Xbkp_f2]=computeXBKPbest(X, Y_f2, Npwl+1, plotoption);
[Xbkp_AEQ]=computeXBKPbest(X_AEQ, Y_AEQ, Npwl_AEQ+1, 0);
% Plotting happens inside of computeXBKPbest.m
%-----------------next code for info how to calculate Ak_f1,Ak_f2 ---------
% Define parameters for PWL functions/constraints
Xk_f1=X(Xbkp_f1);
Xk_f2=X(Xbkp_f2);
Y_f1=Y_f1(Xbkp_f1);
Y_f2=Y_f2(Xbkp_f2);
Xk_AEQ=X_AEQ(Xbkp_AEQ);
Y_AEQ=Y_AEQ(Xbkp_AEQ);
%%%%%%%%%%%%%%%%%%
Y0_f1=Y_f1(1);
Y0_f2=Y_f2(1);
Y0_AEQ=Y_AEQ(1);
% Create empty variables
Ak_f1=[];
Ak_f2=[];
Ak_AEQ=[];
Xk_f1_max=[];
Xk_f2_max=[];
Xk_AEQ_max=[];
% Calculate Ak values
for k=2:Npwl+1
Ak_f1(k-1) = (Y_f1(k)-Y_f1(k-1))/(Xk_f1(k)-Xk_f1(k-1));
Ak_f2(k-1) = (Y_f2(k)-Y_f2(k-1))/(Xk_f2(k)-Xk_f2(k-1));
Xk_f1_max(k-1) = Xk_f1(k)-Xk_f1(k-1);
Xk_f2_max(k-1) = Xk_f2(k)-Xk_f2(k-1);
end
for k=2:Npwl_AEQ+1
Ak_AEQ(k-1) = (Y_AEQ(k)-Y_AEQ(k-1))/(Xk_AEQ(k)-Xk_AEQ(k-1));
Xk_AEQ_max(k-1) = Xk_AEQ(k)-Xk_AEQ(k-1);
end
%% Plotting the Figure 7
% Figure name: 7. PWL performances for different numbers of blocks—(a)
% top oil temperature; (b) hot spot temperature
clc;clear all % clear a command window and a workspace
load('fig_nRMSE.mat') % load data of precalculated figure
% We will upload the code for calculating fig_nRMSE.mat later
% create a figure
figure('InvertHardcopy','off','Color',[1 1 1],'DefaultAxesFontSize',14);
%---------------------------Figure 7 (a)----------------------------------
subplot(1,2,1)
plot1=plot(x_axis,[ref_TOT',TOT{1,1}',TOT{2,1}',TOT{3,1}']);
set(plot1(1),'DisplayName','ref','LineStyle','-','Color','g');
set(plot1(4),'DisplayName','C=2 -9.5%','LineStyle','-','Color',[17 17 17]/255);
set(plot1(3),'DisplayName','C=4 -2.1%','LineStyle','-','Color','k');
set(plot1(2),'DisplayName','C=8 -0.5%','LineStyle','--','Color','k');
ylabel('Top-oil temperature,°C')
xlabel('Time, hours')
legend('Location','northwest')
%---------------------------Figure 7 (b)----------------------------------
subplot(1,2,2)
plot2=plot(x_axis,[ref_HST',HST{1,1}',HST{2,1}',HST{3,1}']);
set(plot2(1),'DisplayName','ref','LineStyle','-','Color','g');
set(plot2(4),'DisplayName','C=2 -9.5%','LineStyle','-','Color',[17 17 17]/255);
set(plot2(3),'DisplayName','C=4 -2.1%','LineStyle','-','Color','k');
set(plot2(2),'DisplayName','C=8 -0.5%','LineStyle','--','Color','k');
ylabel('Hot-spot temperature,°C')
xlabel('Time, hours')
legend('Location','northwest')
%% Plotting the Figure 8
% Figure name: PWL process: (a) functions fitting and breakpoints for fAEQ;
% (b) aging function—fAEQ error versus θh error
clc;clear all % clear a command window and a workspace
%---------------------------Figure 8 (a)----------------------------------
% Number of PWL segments for ageing curve
Npwl_AEQ=12;
% plot fitting results - 0 : no - 1 : yes
plotoption=1;
% x-axis value for AEQ curve
X_AEQ=0:5:120;
% y-axis function for AEQ
Y_AEQ=2.^((X_AEQ-98)/6);
% Plot figure
[~]=computeXBKPbest(X_AEQ, Y_AEQ, Npwl_AEQ+1, plotoption);
%---------------------------Figure 8 (b)----------------------------------
% Select the three hot spot temperature (HST) as a reference
HST_ref=[60,80,120]; % °C
% Calculate the aging equivalent for reference HST
AEQ_ref=2.^((HST_ref-98)/6);
% Create the initial deviations: +-5% from 100 %
Deviations=[95:1:105]';
% Calculate absolute values of HST for +-5% deviations
for i=1:length(HST_ref)
HST_deviations(i,:)=HST_ref(i)*Deviations/100;
end
% Calculate the corresponding AEQ deviations
AEQ_deviations=2.^((HST_deviations-98)/6);
% Convert AEQ_deviations from pu to % (relative to 100%)
for i=1:length(AEQ_deviations)
AEQ_deviations(:,i)=AEQ_deviations(:,i)./AEQ_ref'*100;
end
% Create figure
figure('InvertHardcopy','off','Color',[1 1 1],'WindowState','maximized',...
'DefaultAxesFontSize',14);
Relative_error=Deviations-100;
Relative_error_AEQ=AEQ_deviations-100;
plot1=plot(Relative_error,Relative_error_AEQ);
xlabel('Relative error HST, %')
ylabel('Relative error AEQ, %')
set(plot1(1),'DisplayName','HST=60 °C - AEQ=0.01 pu','LineStyle','-',...
'LineWidth',3,'Color',[17 17 17]/255);
set(plot1(2),'DisplayName','HST=80 °C - AEQ=0.12 pu','LineStyle','--',...
'LineWidth',3,'Color','k');
set(plot1(3),'DisplayName','HST=120 °C- AEQ=12.69 pu','LineStyle','-',...
'LineWidth',3,'Color','g');
% Show the legend
legend('show')
%% Plotting the Figure 9
% Figure name: Simulation with single and multiple time sets:
% (a) DR flexibility power; (b) transformer temperatures.
% The code is in prepation. It will be uploaded soon
%% Plotting the Figure 10
% Figure name: Validation run with “energy shifting”:
% (a) transformer loadings; (b) temperatures
clc;clear all % clear a command window and a workspace
load LOADprofile.mat % normalized load profile in pu
% Convert
[LOADprofile]=Convert2minute(LOADprofile);
% Load ambient temperature
load('initial_data.mat','AMB');
AMB=AMB+15; % make an ambient temperature hotter for 15 degc
% Prepare the intial conditions
ageing_constraint_on=0; % consider the transformer ageing 1- yes 0 - no
% Select the "energy shifting" mode
SOCflex_init=0.5; % battery initial SOC in 50 %
SOCflex_end=0.5; % battery initial SOC in 50 %
% Do a validation run
[PUL_optim,Pflex_max,Eflex_max,theta_h_optim,theta_0_optim]=...
validation_run(LOADprofile,AMB,SOCflex_init,SOCflex_end,...
ageing_constraint_on);
% Note that additional (to article [1]) figures appear
disp('-------------------------------------Attention to figure 10!---------------------------------')
disp(' The flexible power (kW) and energy (kWh) is a bit different than in the article Energies [1]')
disp(' This is because in this version we use the internal MATLAB solver linprog and not a cplex (external solver) as in [1].')
disp('This allows users, who does not have CPLEX, to run the MATLAB code. So we decided to keep the version which can be used for larger number of users')
disp(' Anyway, this small difference does not change the article conclusions')
disp('-------------------------------------Attention to figure 10!----------------------------------')
%% Plotting the Figure 11
% Figure name: Validation run with “energy shedding”:
% (a) transformer loadings; (b) temperatures
clc;clear all % clear a command window and a workspace
load LOADprofile.mat % normalized load profile in pu
% Convert load from 24-hours format to 1440-minute format
[LOADprofile]=Convert2minute(LOADprofile);
% Load ambient temperature
load('initial_data.mat','AMB');
AMB=AMB+15; % make an ambient temperature hotter for 15 degc
% Prepare the intial conditions
ageing_constraint_on=0; % consider the transformer ageing 1- yes 0 - no
% Select the "energy shedding" mode
SOCflex_init=1; % battery initial SOC in 100 %
SOCflex_end=0; % battery initial SOC in 0 %
% Do a validation run
[PUL_optim,Pflex_max,Eflex_max,theta_h_optim,theta_0_optim]=...
validation_run(LOADprofile,AMB,SOCflex_init,SOCflex_end,...
ageing_constraint_on);
% Note that additional (to article [1]) figures appear
disp('-------------------------------------Attention to figure 11!---------------------------------')
disp(' The flexible power (kW) and energy (kWh) is a bit different than in the article Energies [1]')
disp(' This is because in this version we use the internal MATLAB solver linprog and not a cplex (external solver) as in [1].')
disp('This allows users, who does not have CPLEX, to run the MATLAB code. So we decided to keep the version which can be used for larger number of users')
disp(' Anyway, this small difference does not change the article conclusions')
disp('-------------------------------------Attention to figure 11!----------------------------------')
%% Plotting the Figure 12
% Figure name: Validation run with “energy shedding” + ageing constraint:
% (a) transformer loadings; (b) temperatures
clc;clear all % clear a command window and a workspace
load LOADprofile.mat % normalized load profile in pu
% Convert
[LOADprofile]=Convert2minute(LOADprofile);
% Load ambient temperature
load('initial_data.mat','AMB');
AMB=AMB+15; % make an ambient temperature hotter for 15 degc
% Prepare the intial conditions
ageing_constraint_on=1; % consider the transformer ageing 1- yes 0 - no
% Select the "energy shedding" mode
SOCflex_init=1; % battery initial SOC in 100 %
SOCflex_end=0; % battery initial SOC in 0 %
% Do a validation run
[PUL_optim,Pflex_max,Eflex_max,theta_h_optim,theta_0_optim]=...
validation_run(LOADprofile,AMB,SOCflex_init,SOCflex_end,ageing_constraint_on);
% Note that additional (to article [1]) figures appear
disp('-------------------------------------Attention to figure 12!---------------------------------')
disp(' The flexible power (kW) and energy (kWh) is a bit different than in the article Energies [1]')
disp('This is because in this version we use the internal MATLAB solver "linprog" and not a CPLEX (external solver) as in [1].')
disp('This allows users, who does not have CPLEX, to run the MATLAB code. So we decided to keep the version which can be used for larger number of users')
disp(' Anyway, this small difference does not change the article conclusions')
disp('-------------------------------------Attention to figure 12----------------------------------')
%% Plotting the Figure 13
% Figure name: One-week profiles in January, comparison of the base case
% and Dynamic Thermal Rating (DTR)/DR in “energy shedding mode”:
% (a) transformer loading; (b) hot-spot temperature
clc;clear all % clear a command window and a workspace
% Load results for 75% reserve (+existing loading 86%)
load('result_AEQ_100.mat')
Base_load=PUL_init;
% Find annual profile of transformer with reserve = initial PUL +reserve
Base_load_reserve=Base_load+result.headroom(end);
% Find optimized annual profile of transformer i.e. with DR
Optimal_loading=PUL_optim;
% Caclcaulte thermal regime of distrbution transformer
[~,~,AEQ_init,theta_h_init,theta_0_init]=distribution_transformer(Base_load,AMB);
[~,~,AEQ,theta_h,theta_0]=distribution_transformer(Base_load_reserve,AMB);
[~,~,AEQ_optim,theta_h_optim,theta_0_optim]=distribution_transformer(Optimal_loading,AMB);
% Prepare a time vector
t1 = datetime(2019,1,1,0,0,0,'Format','HH:SS');
t2 = datetime(2019,12,31,23,59,0,'Format','HH:SS');
t = [t1:minutes(1):t2]';
% Create figure
figure('WindowState','maximized','DefaultAxesFontSize',14);
% Plot transformer loadings
subplot(2,1,1)
plot1=plot(t,[Base_load,Base_load_reserve,Optimal_loading]);
set(plot1(1),'DisplayName','Base load','LineStyle','-',...
'LineWidth',2,'Color',[17 17 17]/255);
set(plot1(2),'DisplayName','Base load+reserve 75%','LineStyle',':',...
'LineWidth',2,'Color','k');
set(plot1(3),'DisplayName','Optimal loading','LineStyle','-',...
'LineWidth',2,'Color','g');
xlabel('Time')
ylabel('Transformer loading, pu')
ylim([0,1.6]);
xlim([t(1441) t(192*60)])
legend ('show')
% Plot transformer temperatures
subplot(2,1,2)
plot2=plot(t,[theta_h_init,theta_h,theta_h_optim]);
set(plot2(1),'DisplayName','Base load','LineStyle','-',...
'LineWidth',2,'Color',[17 17 17]/255);
set(plot2(2),'DisplayName','Base load+reserve 75%','LineStyle',':',...
'LineWidth',2,'Color','k');
set(plot2(3),'DisplayName','Optimal loading','LineStyle','-',...
'LineWidth',2,'Color','g');
ylabel('Hot spot temperature, °C')
xlabel('Time')
ylim([0,140]);
xlim([t(1441) t(192*60)]) % Select one week from January 2
%% Plotting the Figure 14
% Figure name: Obtained results for different reserve margins and DR in
% “energy-shedding” mode: (a) DR rated power; (b) DR power share compared
% to the added load; (c) DR rated energy; (d) DR energy share compared to
% the total energy of load
clc;clear all % clear a command window and a workspace
% Transformer rating
Nominal_rating=500; %kVA
% Step of power connected
Power_connected_delta=25; % kW cosphi=1
% energy for connected constant load 25 kW (5%)
Energy_connected_delta=Power_connected_delta*8760; % kWh per year
%-----------------------AEQ≤1pu Ptr≤1.5pu θh≤120℃ θo≤105℃---------------
% Load precalculated results
load('result_AEQ_100.mat')
% extract the vector of studied reserve in pu
reserve=result.headroom(2:end)*100;
% Reserve in kW
reserve_kW=Nominal_rating*reserve/100;
% Extract flexibility metrics: power in kW and energy in kWh
for i=1:length(reserve)
P_flex(i,1)=result.flex_KW(i+1);
E_flex(i,1)=result.flex_KWh(i+1);
end
% Load aggregated load profile in W
load('Aggregated_load_profile_100_houses.mat')
% Convert load to kW and to hour resolution
Load_agg_kW=Convert2hours(Load_agg,60)/1000;
% Estimate the existing energy as a sum (but better as integral)
Energy_existing=sum(Load_agg_kW); %Energy in kWh
% Find a peak load
Load_agg_peak=max(Load_agg_kW);
% Create a figure
figure()
% Plot the flexibility in kW as a function of reserve margin
subplot(2,2,1), plot(reserve,P_flex, 'linewidth', 2)
xlabel('Reserve (%)')
ylabel('Power (kW)')
title('Power shedding, kW')
legend(' AEQ(kW)')
grid on
% Plot power shedding share in %
subplot(2,2,2), plot(reserve,(P_flex./...
(Load_agg_peak+reserve/100*Nominal_rating))*100, 'linewidth', 2)
grid on
ylabel('Power shedding share (%)')
xlabel('Reserve (%)')
title('Power shedding/Power peak (%)')
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃')
% plot values of energy shedding
subplot(2,2,3), plot(reserve,E_flex, 'linewidth', 2)
ylabel('Energy (kWh)')
title('Energy shedding(kWh)')
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃')
xlabel('Reserve (%)')
set(gca, 'YScale', 'log')
grid on
% Plot energy shedding in %
subplot(2,2,4)
Energy_total=Energy_existing+Energy_connected_delta.*reserve/5; % 5 = 5% of Power_connected_delta
plot(reserve,(E_flex./(Energy_total))*100, 'linewidth', 2)
title('Energy shedding/Energy total(%)')
legend('AEQ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃')
grid on
ylabel('The Energy shedding share(%)')
xlabel('Reserve (%)')
hold on
%------------------------Ptr≤ 1.5pu θh≤120℃ θo≤105℃--------------------
clear
% Load precalculated results for given formulation
load('result_PUL_100.mat')
% Redefine the transformer rating
Nominal_rating=500;
% Step of power connected
Power_connected_delta=25; % kW
% Calculate the annual energy connected
Energy_connected_delta=Power_connected_delta*8760; % KWh per year for 25 KW connected (5%)
% Extract the reserve margins
reserve=result.headroom(2:end)*100;
% Convert into kW
reserve_kW=Nominal_rating*reserve/100;
% Extract flexibility metrics: power in kW and energy in kWh
for i=1:length(reserve)
P_flex(i,1)=result.flex_KW(i+1);
E_flex(i,1)=result.flex_KWh(i+1);
end
% Load aggregated load profile in W
load('Aggregated_load_profile_100_houses.mat')
% Convert to kW and transform into hour resolution
Load_agg_kW=Convert2hours(Load_agg,60)/1000;
% Estimate the energy of load
Energy_existing=sum(Load_agg_kW); %Energy in kWh
% Find a peak load
Load_agg_peak=max(Load_agg_kW);
% Plot the flexibility in kW as a function of reserve margin
subplot(2,2,1),hold on
plot(reserve,P_flex, 'linewidth', 2)
xlabel('Reserve (%)')
ylabel('Power (kW)')
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','Ptr≤ 1.5pu +θh≤120℃+θo≤105℃')
grid on
% Plot power shedding share in %
subplot(2,2,2), hold on
plot(reserve,(P_flex./(Load_agg_peak+reserve/100*Nominal_rating))*100, 'linewidth', 2)
grid on
ylabel('Power shedding share (%)')
xlabel('Reserve (%)')
legend('Power shedding/Power peak (%) AEQ','Power shedding/Power peak (%) PUL')
% Plot energy shedding
subplot(2,2,3), hold on
plot(reserve,E_flex, 'linewidth', 2)
ylabel('Energy (kWh)')
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','Ptr≤ 1.5pu +θh≤120℃+θo≤105℃')
xlabel('Reserve (%)')
set(gca, 'YScale', 'log')
grid on
% Plot energy shedding in %
subplot(2,2,4), hold on
Energy_total=Energy_existing+Energy_connected_delta.*reserve/5;
plot(reserve,(E_flex./(Energy_total))*100, 'linewidth', 2)
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','Ptr≤ 1.5pu +θh≤120℃+θo≤105℃')
grid on
ylabel('The Energy shedding share(%)')
xlabel('Reserve (%)')
%-------------------------% θh≤120℃ θo≤105℃------------------------------
clear
% Load precalculated results for given formulation
load('result_temp_100.mat')
% Redefine the transformer rating
Nominal_rating=500;
% Step of power connected
Power_connected_delta=25; % kW
% Calculate the annual energy connected
Energy_connected_delta=Power_connected_delta*8760; % KWh per year for 25 KW connected (5%)
% Extract the reserve margins
reserve=result.headroom(2:end)*100;
% Convert into kW
reserve_kW=Nominal_rating*reserve/100;
% Extract flexibility metrics: power in kW and energy in kWh
for i=1:length(reserve)
P_flex(i,1)=result.flex_KW(i+1);
E_flex(i,1)=result.flex_KWh(i+1);
end
% Load aggregated load profile in W
load('Aggregated_load_profile_100_houses.mat')
% Convert to kW and transform into hour resolution
Load_agg_kW=Convert2hours(Load_agg,60)/1000;
% Estimate the energy of load
Energy_existing=sum(Load_agg_kW); %Energy in kWh
% Find a peak load
Load_agg_peak=max(Load_agg_kW);
% Plot the flexibility in kW as a function of reserve margin
subplot(2,2,1),hold on
plot(reserve,P_flex, 'linewidth', 2)
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','θh≤120℃+θo≤105℃')
grid on
% Plot power shedding share in %
subplot(2,2,2), hold on
plot(reserve,(P_flex./(Load_agg_peak+reserve/100*Nominal_rating))*100, 'linewidth', 2)
grid on
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','θh≤120℃+θo≤105℃')
% Plot energy shedding
subplot(2,2,3), hold on
plot(reserve,E_flex, 'linewidth', 2)
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','θh≤120℃+θo≤105℃')
set(gca, 'YScale', 'log')
grid on
% Plot energy shedding in %
subplot(2,2,4), hold on
Energy_total=Energy_existing+Energy_connected_delta.*reserve/5;
plot(reserve,(E_flex./(Energy_total))*100, 'linewidth', 2)
grid on
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','θh≤120℃+θo≤105℃')
%-----------------------AEQ≤1pu Ptr≤1.5pu θh≤98℃ θo≤105℃----------------
clear
% Load precalculated results for given formulation
load('result98_AEQ_100.mat')
Nominal_rating=500;
% Step of power connected
Power_connected_delta=25;
% Calculate the annual energy connected
Energy_connected_delta=Power_connected_delta*8760; % KWh per year for 25 KW connected (5%)
% Extract the reserve margins
reserve=result.headroom(2:end)*100;
% Convert into kW
reserve_kW=Nominal_rating*reserve/100;
% Extract flexibility metrics: power in kW and energy in kWh
for i=1:length(reserve)
P_flex(i,1)=result.flex_KW(i+1);
E_flex(i,1)=result.flex_KWh(i+1);
end
% Load aggregated load profile in W
load('Aggregated_load_profile_100_houses.mat')
% Convert to kW and transform into hour resolution
Load_agg_kW=Convert2hours(Load_agg,60)/1000;
% Estimate the energy of load
Energy_existing=sum(Load_agg_kW); %Energy in kWh
% Find a peak load
Load_agg_peak=max(Load_agg_kW);
% Plot the flexibility in kW as a function of reserve margin
subplot(2,2,1),hold on
plot(reserve,P_flex, 'linewidth', 2)
xlabel('Reserve (%)')
ylabel('Power (kW)')
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃',...
'Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','θh≤120℃+θo≤105℃',...
'Ptr≤1.5pu +θh≤98℃+θo≤105℃')
grid on
% Plot power shedding share in %
subplot(2,2,2), hold on
plot(reserve,(P_flex./(Load_agg_peak+reserve/100*Nominal_rating))*100,...
'linewidth', 2)
grid on
ylabel('Power shedding share (%)')
xlabel('Reserve (%)')
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃',...
'Ptr≤ 1.5pu +θt≤120℃+θo≤105℃','θh≤120℃+θo≤105℃',...
'Ptr≤1.5pu +θh≤98℃+θo≤105℃')
% Plot energy shedding
subplot(2,2,3), hold on
plot(reserve,E_flex, 'linewidth', 2)
ylabel('Energy (kWh)')
xlabel('Reserve (%)')
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃',...
'Ptr≤ 1.5pu +θh≤120℃+θo≤105℃','θh≤120℃+θo≤105℃',...
'Ptr≤1.5pu +θh≤98℃+θo≤105℃')
set(gca, 'YScale', 'log')
grid on
% Plot energy shedding in %
subplot(2,2,4), hold on
Energy_total=Energy_existing+Energy_connected_delta.*reserve/5;
plot(reserve,(E_flex./(Energy_total))*100, 'linewidth', 2)
grid on
ylabel('The Energy shedding share(%)')
xlabel('Reserve (%)')
set(gca, 'YScale', 'log')
legend('AEQ ≤1pu+Ptr≤ 1.5pu +θh≤120℃+θo≤105℃',...