-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddqn_Agent.py
146 lines (122 loc) · 5.83 KB
/
ddqn_Agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import tensorflow as tf
physical_devices = tf.config.list_physical_devices('GPU')
from keras.layers import Dense, Activation
from keras.models import Sequential, load_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import plot_model
import numpy as np
import time
# replay buffer to allow the agent to sample state action reward... across many different episodes
# and also for the agent so that he doesn't get stuck
class ReplayBuffer(object):
def __init__(self, max_size, input_shape, n_actions, discrete=False):
self.mem_size = max_size
self.mem_cntr = 0
# because we are handling a continues action spaces
self.discrete = discrete
self.state_memory = np.zeros((self.mem_size, input_shape))
# to store the state after taking an action
self.new_state_memory = np.zeros((self.mem_size, input_shape))
dtype = np.int8 if self.discrete else np.float32
self.action_memory = np.zeros((self.mem_size, n_actions), dtype=dtype)
self.reward_memory = np.zeros(self.mem_size)
# the expected reward for terminal state is 0
self.terminal_memory = np.zeros(self.mem_size, dtype=np.float32)
def store_transition(self, state, action, reward, state_, done):
# find first avilable memory
index = self.mem_cntr % self.mem_size
self.state_memory[index] = state
self.new_state_memory[index] = state_
# store one hot encoding of actions, if appropriate
if self.discrete:
actions = np.zeros(self.action_memory.shape[1])
actions[action] = 1.0
self.action_memory[index] = actions
else:
self.action_memory[index] = action
self.reward_memory[index] = reward
self.terminal_memory[index] = 1 - done
self.mem_cntr += 1
def sample_buffer(self, batch_size):
#for not sampling the zeros we want to find max between the two
max_mem = min(self.mem_cntr, self.mem_size)
# get array from 0 to max_mem-1
batch = np.random.choice(max_mem, batch_size)
states = self.state_memory[batch]
actions = self.action_memory[batch]
rewards = self.reward_memory[batch]
states_ = self.new_state_memory[batch]
terminal = self.terminal_memory[batch]
return states, actions, rewards, states_, terminal
def Model(lr, n_actions, input_dims, fc_dims):
model = Sequential([
Dense(fc_dims, input_shape=(input_dims,),activation='relu'),
Dense(fc_dims,activation='relu'),
Dense(fc_dims,activation='relu'),
Dense(n_actions)])
model.compile(optimizer=Adam(learning_rate=lr,decay=0.001), loss='mse')
return model
class DDQNAgent(object):
# NB : the gamma here is to reduce the predicted reward because it may or may not end-up in the same tragedy
def __init__(self, alpha, gamma, n_actions, epsilon, batch_size,
input_dims, epsilon_dec=0.9995, epsilon_end=0.01,
mem_size=1000000, fname='Model',
replace_target=100):
self.action_space = [i for i in range(n_actions)]
self.n_actions = n_actions
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_dec = epsilon_dec
self.epsilon_min = epsilon_end
self.batch_size = batch_size
self.model_file = fname
self.replace_target = replace_target
self.memory = ReplayBuffer(mem_size, input_dims, n_actions,
discrete=True)
self.q_eval = Model(alpha, n_actions, input_dims, 32)
self.q_target = Model(alpha, n_actions, input_dims, 32)
def remember(self, state, action, reward, new_state, done):
self.memory.store_transition(state, action, reward, new_state, done)
def choose_action(self, state):
state=np.array(state)
state = state[np.newaxis, :]
rand = np.random.random()
if rand < self.epsilon:
action = np.random.choice(self.action_space)
else:
actions = self.q_eval.predict(state)
action = np.argmax(actions)
return action
def learn(self):
if self.memory.mem_cntr > self.batch_size:
state, action, reward, new_state, done = self.memory.sample_buffer(self.batch_size)
action_values = np.array(self.action_space, dtype=np.int8)
action_indices = np.dot(action, action_values)
q_next = self.q_target.predict(new_state)
q_eval = self.q_eval.predict(new_state)
q_pred = self.q_eval.predict(state)
max_actions = np.argmax(q_eval, axis=1)
q_target = q_pred
batch_index = np.arange(self.batch_size, dtype=np.int32)
q_target[batch_index, action_indices] = reward + \
self.gamma*q_next[batch_index, max_actions.astype(int)]*done
_ = self.q_eval.fit(state, q_target, verbose=0)
self.epsilon = self.epsilon*self.epsilon_dec if self.epsilon > \
self.epsilon_min else self.epsilon_min
if self.memory.mem_cntr % self.replace_target == 0:
self.update_network_parameters()
def update_network_parameters(self):
self.q_target.set_weights(self.q_eval.get_weights())
def save_model(self):
timestr = time.strftime("-%d-%m-%Y-%H-%M")
self.q_eval.save("Models/"+self.model_file+timestr+".h5")
def load_model(self,path):
self.q_eval = load_model(path)
self.q_eval.summary()
self.q_target = load_model(path)
# if we are in evaluation mode we want to use the best weights for
# q_target
if self.epsilon == 0.0:
self.update_network_parameters()
def Plotit(self):
plot_model(self.q_eval, to_file="dot_img_file.png", show_shapes=True)