-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_colbert.py
234 lines (198 loc) · 9.27 KB
/
train_colbert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
## built-in
import math,logging,functools,os
import types
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["WANDB_IGNORE_GLOBS"]='*.safetensors' ## not upload ckpt to wandb cloud
## third-party
from accelerate import Accelerator
from accelerate.logging import get_logger
import transformers
from transformers import (
BertTokenizer,
)
transformers.logging.set_verbosity_error()
import torch
import torch.nn as nn
from tqdm import tqdm
import numpy as np
## own
from model import ColBERT,ColBERTConfig
logging.basicConfig(level=logging.INFO)
logger = get_logger(__name__)
def set_seed(seed: int = 19980406):
import random
import numpy as np
import torch
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_yaml_file(file_path):
import yaml
with open(file_path, "r") as file:
config = yaml.safe_load(file)
return config
def parse_args():
import argparse
parser = argparse.ArgumentParser()
## adding args here for more control from CLI is possible
parser.add_argument("--config_file",default='config/train_colbert_msmarco.yaml')
args = parser.parse_args()
yaml_config = get_yaml_file(args.config_file)
args_dict = {k:v for k,v in vars(args).items() if v is not None}
yaml_config.update(args_dict)
args = types.SimpleNamespace(**yaml_config)
return args
class MSMarcoDataset(torch.utils.data.Dataset):
def __init__(self,query_data_path,pos_doc_data_path,neg_doc_data_path,
query_max_len,doc_max_len,num_samples,
):
self.queries = np.memmap(query_data_path, dtype=np.int16, mode='r', shape=(num_samples,query_max_len))
self.pos_docs = np.memmap(pos_doc_data_path,dtype=np.int16, mode='r', shape=(num_samples,doc_max_len))
self.neg_docs = np.memmap(neg_doc_data_path,dtype=np.int16, mode='r', shape=(num_samples,doc_max_len))
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self,idx):
return (self.queries[idx],self.pos_docs[idx],self.neg_docs[idx])
@staticmethod
def collate_fn(samples,tokenizer):
def trim_padding(input_ids,padding_id):
## because we padding it to make length in the preprocess script
## we need to trim the padded sequences in a 2-dimensional tensor to the length of the longest non-padded sequence
non_pad_mask = input_ids != padding_id
non_pad_lengths = non_pad_mask.sum(dim=1)
max_length = non_pad_lengths.max().item()
trimmed_tensor = input_ids[:,:max_length]
return trimmed_tensor
queries = [x[0] for x in samples]
pos_docs = [x[1] for x in samples]
neg_docs = [x[2] for x in samples]
query_input_ids = torch.from_numpy(np.stack(queries).astype(np.int32))
query_attention_mask = (query_input_ids != tokenizer.mask_token_id).int() ## not pad token, called *query augmentation* in the paper
doc_input_ids = torch.from_numpy(np.stack(pos_docs+neg_docs).astype(np.int32))
doc_input_ids = trim_padding(doc_input_ids,padding_id = tokenizer.pad_token_id)
doc_attetion_mask = (doc_input_ids != tokenizer.pad_token_id).int()
return {
'query_input_ids':query_input_ids,
'query_attention_mask':query_attention_mask,
"doc_input_ids":doc_input_ids,
"doc_attention_mask":doc_attetion_mask,
}
def main():
args = parse_args()
set_seed(args.seed)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
log_with='wandb',
mixed_precision='fp16' if args.fp16 else 'no',
)
accelerator.init_trackers(
project_name="colbert",
config=args,
)
if accelerator.is_local_main_process:
wandb_tracker = accelerator.get_tracker("wandb")
LOG_DIR = wandb_tracker.run.dir
## This is a little different from original implementation
## https://github.com/stanford-futuredata/ColBERT/blob/706a7265b06c6b8de1e3236294394e5ada92134e/colbert/modeling/tokenization/query_tokenization.py#L57
tokenizer = BertTokenizer.from_pretrained(args.base_model)
q_mark,d_mark = "[Q]","[D]"
additional_special_tokens = [q_mark,d_mark]
tokenizer.add_special_tokens(
{
"additional_special_tokens":additional_special_tokens,
}
)
colbert_config = ColBERTConfig(
dim = args.dim,
similarity_metric = args.similarity_metric,
mask_punctuation = args.mask_punctuation,
)
colbert = ColBERT.from_pretrained(
args.base_model,
config = colbert_config,
)
colbert.resize_token_embeddings(len(tokenizer))
colbert.train()
if torch.__version__.startswith("2"): colbert = torch.compile(colbert)
train_dataset = MSMarcoDataset(
args.query_data_path,
args.pos_doc_data_path,
args.neg_doc_data_path,
args.query_max_len,args.doc_max_len,args.num_samples
)
train_collate_fn = functools.partial(MSMarcoDataset.collate_fn,tokenizer=tokenizer,)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.per_device_train_batch_size,
shuffle=args.shuffle_train_set,
collate_fn=train_collate_fn,
num_workers=4,pin_memory=True
)
## there is no dev/test dataloader. Original ColBERT just optimize fixed steps
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in colbert.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in colbert.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters,lr=args.lr)
colbert, optimizer, train_dataloader = accelerator.prepare(
colbert, optimizer, train_dataloader,
)
loss_fct = nn.CrossEntropyLoss()
NUM_UPDATES_PER_EPOCH = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
MAX_TRAIN_STEPS = args.max_train_steps
MAX_TRAIN_EPOCHS = math.ceil(MAX_TRAIN_STEPS / NUM_UPDATES_PER_EPOCH)
TOTAL_TRAIN_BATCH_SIZE = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
EVAL_STEPS = args.val_check_interval if isinstance(args.val_check_interval,int) else int(args.val_check_interval * NUM_UPDATES_PER_EPOCH)
total_loss = 0.0
progress_bar_postfix_dict = {}
logger.info("***** Running training *****")
logger.info(f" Num train examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {MAX_TRAIN_EPOCHS}")
logger.info(f" Num Updates Per Epoch = {NUM_UPDATES_PER_EPOCH}")
logger.info(f" Per device train batch size = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {TOTAL_TRAIN_BATCH_SIZE}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {MAX_TRAIN_STEPS}")
completed_steps = 0
progress_bar = tqdm(range(MAX_TRAIN_STEPS), disable=not accelerator.is_local_main_process,ncols=100)
for epoch in range(MAX_TRAIN_EPOCHS):
set_seed(args.seed+epoch)
progress_bar.set_description(f"epoch: {epoch+1}/{MAX_TRAIN_EPOCHS}")
for batch in train_dataloader:
with accelerator.accumulate(colbert):
with accelerator.autocast():
scores = colbert(**batch).view(2,-1).permute(1,0) #[per_device_train_batch_size,2]
## since we always put positive docs before neg docs, check collate_fn
labels = torch.zeros(scores.shape[0], dtype=torch.long, device=scores.device)
loss = loss_fct(scores,labels)
total_loss += loss.item()
accelerator.backward(loss)
if accelerator.sync_gradients:
optimizer.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
accelerator.log({"batch_loss": loss}, step=completed_steps)
accelerator.log({"average_loss": total_loss/completed_steps}, step=completed_steps)
progress_bar_postfix_dict.update(dict(loss=f"{total_loss/completed_steps:.4f}"))
progress_bar.set_postfix(progress_bar_postfix_dict)
if completed_steps % EVAL_STEPS == 0:
if accelerator.is_local_main_process:
unwrapped_model = accelerator.unwrap_model(colbert)
unwrapped_model.save_pretrained(os.path.join(LOG_DIR,f"step-{completed_steps}"))
tokenizer.save_pretrained(os.path.join(LOG_DIR,f"step-{completed_steps}"))
accelerator.wait_for_everyone()
if completed_steps > MAX_TRAIN_STEPS: break
if accelerator.is_local_main_process:wandb_tracker.finish()
accelerator.end_training()
if __name__ == '__main__':
main()