-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_main.py
374 lines (323 loc) · 14.8 KB
/
train_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import os
import sys
import datetime
import time
import math
import json
from collections import OrderedDict
from pathlib import Path
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import utils
from augs.augs import IMAGE_AUGMENTATIONS, EMBED_AUGMENTATIONS, AugWrapper
import loaders
from torchvision import models as torchvision_models
import losses
from main_args import get_args_parser, process_args
from model_builders import load_model
class TeacherStudentCombo(nn.Module):
def __init__(self, student, teacher, args):
super().__init__()
# synchronize batch norms (if any)
if utils.has_batchnorms(student) and not args.disable_ddp:
student = nn.SyncBatchNorm.convert_sync_batchnorm(student)
teacher = nn.SyncBatchNorm.convert_sync_batchnorm(teacher)
# teacher and student start with the same weights
teacher.load_state_dict(student.state_dict())
# Hacky
if not args.train_backbone:
student.backbone = teacher.backbone
elif not args.req_grad:
print('WARNING: args.train_backbone=True, but args.req_grad=False. '
'This is probably not what you want.')
# there is no backpropagation through the teacher, so no need for gradients
for p in teacher.parameters():
p.requires_grad = False
print(f"Student and Teacher are built: they are both {args.arch} network.")
self.args = args
self.student = student
self.teacher = teacher
def forward(self, images):
if self.args.train_backbone:
return self.teacher(images), self.student(images)
embed = self.teacher.backbone_embed(images)
return self.teacher.apply_head(embed), self.student.apply_head(embed)
@property
def module(self):
return self
def student_dict(self):
if self.args.train_backbone:
return self.student.state_dict()
return OrderedDict([(k, v) for k, v in self.student.state_dict().items() if "backbone" not in k])
@property
def trainable_student(self):
if self.args.train_backbone:
return self.student
return self.student.head
def teacher_dict(self):
if self.args.train_backbone:
return self.teacher.state_dict()
return OrderedDict([(k, v) for k, v in self.teacher.state_dict().items() if "backbone" not in k])
@property
def trainable_teacher(self):
if self.args.train_backbone:
return self.teacher
return self.teacher.head
def train_dino(args, writer):
if not args.disable_ddp:
utils.init_distributed_mode(args)
if args.batch_size is not None:
args.batch_size_per_gpu = args.batch_size // utils.get_world_size()
utils.fix_random_seeds(args.seed)
print("git:\n {}\n".format(utils.get_sha()))
print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
cudnn.benchmark = True
student, _, normalize = load_model(args, split_preprocess=True)
teacher, _ = load_model(args)
if not args.precomputed:
aug = IMAGE_AUGMENTATIONS[args.image_aug](num_augs=args.num_augs, **args.aug_args)
transform = AugWrapper(
vit_image_size=args.vit_image_size,
aug_image_size=args.aug_image_size,
global_augs=aug,
normalize=normalize,
image_size=args.image_size
)
else:
aug = EMBED_AUGMENTATIONS[args.embed_aug](num_augs=args.num_augs, **args.aug_args)
transform = AugWrapper(
global_augs=aug
)
dataset = getattr(loaders, args.loader)(
knn_path=args.knn_path,
datapath=args.datapath,
k=args.knn,
transform=transform, dataset=args.dataset,
precompute_arch=args.arch if args.precomputed else None,
**args.loader_args)
if not args.disable_ddp:
sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=True)
else:
sampler = None
data_loader = torch.utils.data.DataLoader(
dataset,
shuffle=(sampler is None),
sampler=sampler,
batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
print(f"In-distribution Data loaded: there are {len(dataset)} images.")
print("len dataloader", len(data_loader))
student_teacher_model = TeacherStudentCombo(teacher=teacher, student=student, args=args)
# move networks to gpu
student_teacher_model = student_teacher_model.cuda()
if not args.disable_ddp:
student_teacher_model = nn.parallel.DistributedDataParallel(student_teacher_model, device_ids=[args.gpu])
# ============ preparing loss ... ============
loss_class = getattr(losses, args.loss)
dino_loss_args = dict(
out_dim=args.out_dim,
batchsize=args.batch_size_per_gpu,
warmup_teacher_temp=args.warmup_teacher_temp,
teacher_temp=args.teacher_temp,
warmup_teacher_temp_epochs=args.warmup_teacher_temp_epochs,
nepochs=args.epochs,
**args.loss_args)
if losses.is_multihead(loss_class):
dino_loss_args.update(num_heads=args.num_heads)
dino_loss = loss_class(**dino_loss_args).cuda()
elif args.num_heads == 1:
dino_loss = loss_class(**dino_loss_args).cuda()
else:
dino_loss = nn.ModuleList([loss_class(**dino_loss_args) for _ in range(args.num_heads)]).cuda()
# ============ preparing optimizer ... ============
params_groups = utils.get_params_groups(student_teacher_model.module.trainable_student)
if args.optimizer == "adamw":
optimizer = torch.optim.AdamW(params_groups) # to use with ViTs
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(params_groups, lr=0, momentum=0.9) # lr is set by scheduler
elif args.optimizer == "lars":
optimizer = utils.LARS(params_groups) # to use with convnet and large batches
else:
raise ValueError("Unknown optimizer: {}".format(args.optimizer))
# for mixed precision training
fp16_scaler = None
if args.use_fp16:
fp16_scaler = torch.cuda.amp.GradScaler()
# ============ init schedulers ... ============
bs_factor = (args.batch_size_per_gpu * utils.get_world_size()) / 256.
lr_schedule = utils.cosine_scheduler(
args.lr * bs_factor, # linear scaling rule
args.min_lr * bs_factor,
args.epochs, len(data_loader),
warmup_epochs=args.warmup_epochs,
)
wd_schedule = utils.cosine_scheduler(
args.weight_decay,
args.weight_decay_end,
args.epochs, len(data_loader),
)
# momentum parameter is increased to 1. during training with a cosine schedule
momentum_schedule = utils.cosine_scheduler(args.momentum_teacher, args.max_momentum_teacher,
args.epochs, len(data_loader))
print(f"Loss, optimizer and schedulers ready.")
# ============ optionally resume training ... ============
to_restore = {"epoch": 0}
utils.restart_from_checkpoint(
os.path.join(args.output_dir, "checkpoint.pth"),
run_variables=to_restore,
student=student_teacher_model.module.student,
teacher=student_teacher_model.module.teacher,
optimizer=optimizer,
fp16_scaler=fp16_scaler,
dino_loss=dino_loss,
)
start_epoch = to_restore["epoch"]
start_time = time.time()
print("Starting DINO training !")
for epoch in range(start_epoch, args.epochs):
if not args.disable_ddp:
data_loader.sampler.set_epoch(epoch)
# ============ training one epoch of DINO ... ============
train_stats = train_one_epoch(student_teacher_model, dino_loss,
data_loader, optimizer, lr_schedule, wd_schedule, momentum_schedule,
epoch, fp16_scaler, args, writer)
# ============ writing logs ... ============
save_dict = {
'student': student_teacher_model.module.student_dict(),
'teacher': student_teacher_model.module.teacher_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch + 1,
'args': args,
'dino_loss': dino_loss.state_dict(),
}
if fp16_scaler is not None:
save_dict['fp16_scaler'] = fp16_scaler.state_dict()
utils.save_on_master(save_dict, os.path.join(args.output_dir, 'checkpoint.pth'))
if args.saveckp_freq and epoch % args.saveckp_freq == 0:
utils.save_on_master(save_dict, os.path.join(args.output_dir, f'checkpoint{epoch:04}.pth'))
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch}
if utils.is_main_process():
with (Path(args.output_dir) / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
try:
torch.set_printoptions(profile="full")
if epoch % 10 == 0:
d_loss = dino_loss[0] if hasattr(dino_loss, "__getitem__") else dino_loss
print("highest probs:", torch.topk(d_loss.probs_pos * 100, 50)[0])
print("lowest probs:", torch.topk(d_loss.probs_pos * 100, 50, largest=False)[0])
torch.set_printoptions(profile="default")
except:
print(" ")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def train_one_epoch(student_teacher_model, dino_loss, data_loader,
optimizer, lr_schedule, wd_schedule, momentum_schedule,epoch,
fp16_scaler, args, writer):
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Epoch: [{}/{}]'.format(epoch, args.epochs)
for it, data in enumerate(metric_logger.log_every(data_loader, 10, header)):
images, _ = data
# update weight decay and learning rate according to their schedule
it = len(data_loader) * epoch + it # global training iteration
for i, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = lr_schedule[it]
if i == 0: # only the first group is regularized
param_group["weight_decay"] = wd_schedule[it]
# move images to gpu
images = [im.cuda(non_blocking=True) for im in images]
# teacher and student forward passes + compute dino loss
with torch.cuda.amp.autocast(fp16_scaler is not None):
teacher_out, student_out = student_teacher_model(images)
if losses.is_multihead(dino_loss) or args.num_heads == 1:
head_losses = dino_loss(student_out, teacher_out, epoch=epoch)
else:
head_losses = torch.stack([d(s, t, epoch=epoch) for d, s, t in zip(dino_loss, student_out, teacher_out)])
loss = head_losses.mean()
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()), flush=True)
sys.exit(1)
# student update
optimizer.zero_grad()
param_norms = None
if fp16_scaler is None:
loss.backward()
if args.clip_grad:
param_norms = utils.clip_gradients(student_teacher_model, args.clip_grad)
utils.cancel_gradients_last_layer(epoch, student_teacher_model,
args.freeze_last_layer)
optimizer.step()
else:
fp16_scaler.scale(loss).backward()
if args.clip_grad:
fp16_scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
param_norms = utils.clip_gradients(student_teacher_model, args.clip_grad)
utils.cancel_gradients_last_layer(epoch, student_teacher_model,
args.freeze_last_layer)
fp16_scaler.step(optimizer)
fp16_scaler.update()
# EMA update for the teacher
with torch.no_grad():
m = momentum_schedule[it] # momentum parameter
s_head_params = student_teacher_model.module.trainable_student.parameters()
t_head_params = student_teacher_model.module.trainable_teacher.parameters()
for param_q, param_k in zip(s_head_params, t_head_params):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
# logging
torch.cuda.synchronize()
metric_logger.update(loss=loss.item())
metric_logger.update_raw(head_losses=head_losses)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(wd=optimizer.param_groups[0]["weight_decay"])
if utils.is_main_process():
writer.add_scalar("Train loss step", loss, it)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
if utils.is_main_process() and args.num_heads > 1:
avg_loss = metric_logger.meters['head_losses'].global_avg
student_teacher_model.module.teacher.head.set_losses(avg_loss)
student_teacher_model.module.student.head.set_losses(avg_loss)
if utils.is_main_process():
if args.num_heads == 1:
writer.add_scalar("Train loss epoch", torch.Tensor([metric_logger.meters['loss'].global_avg]), epoch)
else:
avg_loss = metric_logger.meters['head_losses'].global_avg
writer.add_scalars("Train loss epoch",
{f"head{i}": loss for i, loss in enumerate(avg_loss)},
epoch)
d_loss = dino_loss[0] if hasattr(dino_loss, "__getitem__") else dino_loss
if hasattr(d_loss, 'probs_pos'):
writer.add_histogram("p(k) over Epochs", d_loss.probs_pos, epoch)
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.scalar_meters.items()}
def default_out_dir(loss, dset):
return f"./experiments/{loss}-{dset}"
def make_out_dir(args):
if args.output_dir is None:
args.output_dir = default_out_dir(args.loss, args.loader)
if args.new_run:
n = 1
dir_name = args.output_dir
while Path(args.output_dir).is_dir():
n += 1
args.output_dir = f"{dir_name}{n}"
Path(args.output_dir).mkdir(parents=True, exist_ok=not args.new_run)
def main():
parser = get_args_parser()
args = parser.parse_args()
args = process_args(args)
make_out_dir(args)
writer = None
if utils.is_main_process():
writer = SummaryWriter(args.output_dir)
with open(os.path.join(args.output_dir, "hp.json"), 'wt') as f:
json.dump(vars(args), f, indent=4, default=str)
train_dino(args, writer)
if __name__ == '__main__':
main()