forked from abseil/abseil-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuniform_int_distribution_test.cc
259 lines (223 loc) · 8.71 KB
/
uniform_int_distribution_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/uniform_int_distribution.h"
#include <cmath>
#include <cstdint>
#include <iterator>
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/log.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
namespace {
template <typename IntType>
class UniformIntDistributionTest : public ::testing::Test {};
using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
uint32_t, int64_t, uint64_t>;
TYPED_TEST_SUITE(UniformIntDistributionTest, IntTypes);
TYPED_TEST(UniformIntDistributionTest, ParamSerializeTest) {
// This test essentially ensures that the parameters serialize,
// not that the values generated cover the full range.
using Limits = std::numeric_limits<TypeParam>;
using param_type =
typename absl::uniform_int_distribution<TypeParam>::param_type;
const TypeParam kMin = std::is_unsigned<TypeParam>::value ? 37 : -105;
const TypeParam kNegOneOrZero = std::is_unsigned<TypeParam>::value ? 0 : -1;
constexpr int kCount = 1000;
absl::InsecureBitGen gen;
for (const auto& param : {
param_type(),
param_type(2, 2), // Same
param_type(9, 32),
param_type(kMin, 115),
param_type(kNegOneOrZero, Limits::max()),
param_type(Limits::min(), Limits::max()),
param_type(Limits::lowest(), Limits::max()),
param_type(Limits::min() + 1, Limits::max() - 1),
}) {
const auto a = param.a();
const auto b = param.b();
absl::uniform_int_distribution<TypeParam> before(a, b);
EXPECT_EQ(before.a(), param.a());
EXPECT_EQ(before.b(), param.b());
{
// Initialize via param_type
absl::uniform_int_distribution<TypeParam> via_param(param);
EXPECT_EQ(via_param, before);
}
// Initialize via iostreams
std::stringstream ss;
ss << before;
absl::uniform_int_distribution<TypeParam> after(Limits::min() + 3,
Limits::max() - 5);
EXPECT_NE(before.a(), after.a());
EXPECT_NE(before.b(), after.b());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.a(), after.a());
EXPECT_EQ(before.b(), after.b());
EXPECT_EQ(before.param(), after.param());
EXPECT_EQ(before, after);
// Smoke test.
auto sample_min = after.max();
auto sample_max = after.min();
for (int i = 0; i < kCount; i++) {
auto sample = after(gen);
EXPECT_GE(sample, after.min());
EXPECT_LE(sample, after.max());
if (sample > sample_max) {
sample_max = sample;
}
if (sample < sample_min) {
sample_min = sample;
}
}
LOG(INFO) << "Range: " << sample_min << ", " << sample_max;
}
}
TYPED_TEST(UniformIntDistributionTest, ViolatesPreconditionsDeathTest) {
#if GTEST_HAS_DEATH_TEST
// Hi < Lo
EXPECT_DEBUG_DEATH({ absl::uniform_int_distribution<TypeParam> dist(10, 1); },
"");
#endif // GTEST_HAS_DEATH_TEST
#if defined(NDEBUG)
// opt-mode, for invalid parameters, will generate a garbage value,
// but should not enter an infinite loop.
absl::InsecureBitGen gen;
absl::uniform_int_distribution<TypeParam> dist(10, 1);
auto x = dist(gen);
// Any value will generate a non-empty string.
EXPECT_FALSE(absl::StrCat(+x).empty()) << x;
#endif // NDEBUG
}
TYPED_TEST(UniformIntDistributionTest, TestMoments) {
constexpr int kSize = 100000;
using Limits = std::numeric_limits<TypeParam>;
using param_type =
typename absl::uniform_int_distribution<TypeParam>::param_type;
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the quality of the
// implementation.
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
std::vector<double> values(kSize);
for (const auto& param :
{param_type(0, Limits::max()), param_type(13, 127)}) {
absl::uniform_int_distribution<TypeParam> dist(param);
for (int i = 0; i < kSize; i++) {
const auto sample = dist(rng);
ASSERT_LE(dist.param().a(), sample);
ASSERT_GE(dist.param().b(), sample);
values[i] = sample;
}
auto moments = absl::random_internal::ComputeDistributionMoments(values);
const double a = dist.param().a();
const double b = dist.param().b();
const double n = (b - a + 1);
const double mean = (a + b) / 2;
const double var = ((b - a + 1) * (b - a + 1) - 1) / 12;
const double kurtosis = 3 - 6 * (n * n + 1) / (5 * (n * n - 1));
// TODO(ahh): this is not the right bound
// empirically validated with --runs_per_test=10000.
EXPECT_NEAR(mean, moments.mean, 0.01 * var);
EXPECT_NEAR(var, moments.variance, 0.015 * var);
EXPECT_NEAR(0.0, moments.skewness, 0.025);
EXPECT_NEAR(kurtosis, moments.kurtosis, 0.02 * kurtosis);
}
}
TYPED_TEST(UniformIntDistributionTest, ChiSquaredTest50) {
using absl::random_internal::kChiSquared;
constexpr size_t kTrials = 1000;
constexpr int kBuckets = 50; // inclusive, so actually +1
constexpr double kExpected =
static_cast<double>(kTrials) / static_cast<double>(kBuckets);
// Empirically validated with --runs_per_test=10000.
const int kThreshold =
absl::random_internal::ChiSquareValue(kBuckets, 0.999999);
const TypeParam min = std::is_unsigned<TypeParam>::value ? 37 : -37;
const TypeParam max = min + kBuckets;
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the quality of the
// implementation.
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
absl::uniform_int_distribution<TypeParam> dist(min, max);
std::vector<int32_t> counts(kBuckets + 1, 0);
for (size_t i = 0; i < kTrials; i++) {
auto x = dist(rng);
counts[x - min]++;
}
double chi_square = absl::random_internal::ChiSquareWithExpected(
std::begin(counts), std::end(counts), kExpected);
if (chi_square > kThreshold) {
double p_value =
absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
// Chi-squared test failed. Output does not appear to be uniform.
std::string msg;
for (const auto& a : counts) {
absl::StrAppend(&msg, a, "\n");
}
absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
kThreshold);
LOG(INFO) << msg;
FAIL() << msg;
}
}
TEST(UniformIntDistributionTest, StabilityTest) {
// absl::uniform_int_distribution stability relies only on integer operations.
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
std::vector<int> output(12);
{
absl::uniform_int_distribution<int32_t> dist(0, 4);
for (auto& v : output) {
v = dist(urbg);
}
}
EXPECT_EQ(12, urbg.invocations());
EXPECT_THAT(output, testing::ElementsAre(4, 4, 3, 2, 1, 0, 1, 4, 3, 1, 3, 1));
{
urbg.reset();
absl::uniform_int_distribution<int32_t> dist(0, 100);
for (auto& v : output) {
v = dist(urbg);
}
}
EXPECT_EQ(12, urbg.invocations());
EXPECT_THAT(output, testing::ElementsAre(97, 86, 75, 41, 36, 16, 38, 92, 67,
30, 80, 38));
{
urbg.reset();
absl::uniform_int_distribution<int32_t> dist(0, 10000);
for (auto& v : output) {
v = dist(urbg);
}
}
EXPECT_EQ(12, urbg.invocations());
EXPECT_THAT(output, testing::ElementsAre(9648, 8562, 7439, 4089, 3571, 1602,
3813, 9195, 6641, 2986, 7956, 3765));
}
} // namespace