forked from sjvie/pdrl_rainbow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
131 lines (99 loc) · 3.66 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import ast
import importlib
import os
import random
import numpy as np
import torch
import wandb
import configs.config as default_config
def get_next_power_of_2(k):
n = 1
while n < k:
n *= 2
return n
def is_power_of_2(k):
return (k & (k - 1) == 0) and k > 0
class LinearValue:
def __init__(self, start_value, end_value, step_start, step_end):
assert step_start < step_end
self.start_value = start_value
self.end_value = end_value
self.step_start = step_start
self.step_end = step_end
self.total_steps = self.step_end - self.step_start
self.diff_value = self.end_value - self.start_value
def __call__(self, step):
if step <= self.step_start:
return self.start_value
elif step >= self.step_end:
return self.end_value
else:
return self.start_value + self.diff_value * ((step - self.step_start) / self.total_steps)
def init_logging(conf):
config = {}
for var_name in dir(conf):
if var_name.startswith("__"):
continue
config[var_name] = getattr(conf, var_name)
wandb.init(project="pdrl",
entity="pdrl",
mode=("online" if conf.log_wandb else "offline"),
name=conf.name,
config=config)
def save_agent(agent, total_frames, save_to_wandb):
path = get_agent_save_path(total_frames)
agent.save(path)
if save_to_wandb:
wandb.save(path)
def get_agent_save_path(episode):
filename = "model_" + str(episode) + ".pt"
return os.path.join(wandb.run.dir, filename)
def get_conf(args_raw):
"""
Gets the config as defined by the given args.
All possible arguments can be seen by passing the -h or --help flag.
:param args_raw: command line args of the program
:return: A Config object defined by the given command line args
"""
default_conf = default_config.Config()
default_conf_vars = {}
for var_name in dir(default_conf):
if var_name.startswith("__"):
continue
default_conf_vars[var_name] = getattr(default_conf, var_name)
parser = argparse.ArgumentParser(description="Extended Rainbow implementation")
parser.add_argument("-c", "--config")
for var_name, val in default_conf_vars.items():
parser_name = "--" + var_name
parser.add_argument(parser_name, type=ast.literal_eval)
args = parser.parse_args(args_raw)
args = vars(args)
if args["config"] is not None:
config = importlib.import_module('configs.' + args["config"])
else:
config = default_config
conf = config.Config()
for k, v in args.items():
if v is not None and k != "config":
setattr(conf, k, v)
if conf.seed == -1:
conf.seed = random.randint(0, 1000)
return conf
def set_determinism(seed, cuda_deterministic=False):
"""
Sets the determinism parameters for the program.
This sets the given seed for numpy, pytorch and random.
Additionally, cuda can be set to use deterministic methods, reducing performance.
:param seed: The seed to be used for pseudo-random number generation
:param cuda_deterministic: Whether to use cuda deterministic methods
"""
# set seeds for all pseudo-random number generators
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
# CUDA uses non-deterministic methods by default
# when toggled on in the config, CUDA is set to only use deterministic methods, reducing performance
if cuda_deterministic:
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
torch.use_deterministic_algorithms(True, warn_only=True)