-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlevel_zero_minors.py
198 lines (178 loc) · 9.52 KB
/
level_zero_minors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
class LevelZeroMinor(SageObject):
def __init__(self, b_matrix):
"""
We assume that b_matrix is an orientation of an affine Dynkin diagram,
and that the first column is the affine root.
"""
if not b_matrix.is_skew_symmetrizable():
raise ValueError("The input must be a skew symmetrizable integer matrix")
self._B = copy(b_matrix)
self._rank = self._B.ncols()
# create extended affine root system
self._ext_Cartan_mat = block_diagonal_matrix(2-matrix(self._rank,map(abs,self._B.list())),matrix(1))
self._ext_Cartan_mat[0,self._rank] = 1
self._ext_Cartan_mat[self._rank,0] = 1
self._ext_symm_mat = diagonal_matrix(self._ext_Cartan_mat.is_symmetrizable(return_diag=True))
self._ext_symm_mat *= self._ext_symm_mat.denominator()
self._RootSystem = RootSystem(self._rank+1,self._ext_Cartan_mat,self._ext_symm_mat)
# create finite sub root system
self._sub_Cartan_mat = self._ext_Cartan_mat[1:self._rank,1:self._rank]
self._sub_symm_mat = self._ext_symm_mat[1:self._rank,1:self._rank]
self._sub_RootSystem = RootSystem(self._rank-1,self._sub_Cartan_mat,self._sub_symm_mat)
# create Coxeter words and element
self._coxeter_word = self.coxeter()
self._coxeter_element = prod([self._RootSystem._simple_reflections[i] for i in self._coxeter_word])
self._double_coxeter = [(i,-1) for i in self._coxeter_word]
cv = list(self._coxeter_word)
cv.reverse()
self._double_coxeter += [(i,1) for i in cv]
# create ambient polynomial ring
self._parameter_polynomial_ring = PolynomialRing(QQ,['t%s'%i for i in xrange(self._rank)]+['u%s'%i for i in xrange(self._rank)])
self._polygens = self._parameter_polynomial_ring.gens()
# create cluster algebra with principal coefficients
self._cluster_algebra = ClusterAlgebra(block_matrix([[self._B],[identity_matrix(self._rank)]]))
# compute generic evaluations of principal coefficients
self._coefficients = []
temp_coeff = []
for i in xrange(self._rank):
# next two lines depend on the implementation of weights by RootSystem
root = self._RootSystem._fundamental_weights[i]-self._coxeter_element*self._RootSystem._fundamental_weights[i]
coeff = self._polygens[self._rank+i]**(-1)*prod([self._polygens[j]**root[self._rank+1+j] for j in xrange(self._rank)])
temp_coeff.append(coeff)
for j in xrange(self._rank):
coeff = temp_coeff[j]
for i in self._coxeter_word:
if i == j:
break
else:
coeff *= temp_coeff[i]**self._ext_Cartan_mat[i,j]
self._coefficients.append(coeff)
# specify cluster variables to generalized minors
clgens = self._cluster_algebra.ambient().gens()
self._initial_cluster = dict([(clgens[i],self._polygens[self._rank+i]**(-1)) for i in xrange(self._rank)]+[(clgens[self._rank+i],self._coefficients[i]) for i in xrange(self._rank)])
def coxeter(self):
r"""
Returns a list expressing the coxeter element corresponding to self._B
(twisted) reflections are applied from top of the list, for example
[2, 1, 0] correspond to s_2s_1s_0
Sources == non positive columns == leftmost letters
"""
zero_vector = vector([0 for x in range(self._rank)])
coxeter = []
B = copy(self._B)
columns = B.columns()
source = None
for j in range(self._rank):
for i in range(self._rank):
if all(x <=0 for x in columns[i]) and columns[i] != zero_vector:
source = i
break
if source == None:
if B != matrix(self._rank):
raise ValueError("Unable to find a Coxeter element representing self._B")
coxeter += [ x for x in range(self._rank) if x not in coxeter]
break
coxeter.append(source)
columns[source] = zero_vector
B = matrix(columns).transpose()
B[source] = zero_vector
columns = B.columns()
source = None
return tuple(coxeter)
def g_to_weight(self,gvect):
return sum([gvect[i]*self._RootSystem.fundamental_weight(i) for i in xrange(self._rank)])
def truncate_weight(self,wt):
return sum([self._RootSystem.weightify(wt)[i]*self._sub_RootSystem.fundamental_weight(i-1) for i in xrange(1,self._rank)])
def level_zero_weight_multiplicity(self, highest_wt, wt):
# return multiplicity of wt in level zero representation indexed by dominant finite-type highest_wt
return self._sub_RootSystem.weight_multiplicity(highest_wt,self.truncate_weight(wt))
def validate_weight(self, xlist, wt1, wt2, highest_wt, alpha):
# check whether there is an ambiguity in the next step of generic_evaluation
current_wt = copy(wt1)
current_wt_mult = self.level_zero_weight_multiplicity(highest_wt, current_wt)
initial_wt_mult = current_wt_mult
while current_wt_mult != 0:
if current_wt_mult < initial_wt_mult:
print "There was an ambiguity."
print "initial_wt_mult = ", initial_wt_mult
print "current_wt_mult = ", current_wt_mult
print "current_wt = ", current_wt
print "alpha = ", alpha
print "xlist = ", xlist
print "wt1 = ", wt1
print "wt2 = ", wt2
current_wt += alpha
current_wt_mult = self.level_zero_weight_multiplicity(highest_wt, current_wt)
def alpha_string(self, wt, highest_wt, alpha):
#determines the length of the alpha string containing wt
#might fail if validate_weight gives a complaint
current_wt = copy(wt)
current_wt_mult = self.level_zero_weight_multiplicity(highest_wt, current_wt)
initial_wt_mult = current_wt_mult
num_steps = 0
while current_wt_mult != 0:
current_wt += alpha
num_steps += 1
current_wt_mult = self.level_zero_weight_multiplicity(highest_wt, current_wt)
string_length = self._RootSystem.pairing(alpha,current_wt)
#print "sl_2 weight=",string_length
return (num_steps-1,string_length-2)
def level_zero_dominant_conjugate(self, wt):
# wt is an element of the finite-type weight subspace of the affine weight space
wt = self._RootSystem.weightify(wt)
trunc_wt = self.truncate_weight(wt)
for w in self._sub_RootSystem.Weyl_group():
Weyl_wt = w*trunc_wt
if self._sub_RootSystem.is_dominant(Weyl_wt):
return self._sub_RootSystem.weightify(Weyl_wt)
return self._sub_RootSystem._zero()
def generic_evaluation(self, xlist, wt1, wt2 = None, highest_wt = None):
if wt2 == None:
wt2 = copy(wt1)
if highest_wt == None:
highest_wt = self.level_zero_dominant_conjugate(wt2)
if xlist == []:
if wt1 == wt2:
return 1
else:
return 0
new_xlist = copy(xlist)
i, eps = new_xlist.pop()
alpha = eps * self._RootSystem._simple_roots[i]
pairing = self._RootSystem.pairing(alpha, wt1)
self.validate_weight(xlist, wt1, wt2, highest_wt, sign(pairing)*alpha if pairing != 0 else alpha)
output = 0
j = 0
new_wt1 = copy(wt1)
while self.level_zero_weight_multiplicity(highest_wt, new_wt1) != 0:
k,n = self.alpha_string(wt1,highest_wt,alpha)
if eps > 0:
#if self._polygens[i]**j * binomial(n-k+j,n-k) != 1:
# print self._RootSystem.weightify(wt1), self._polygens[i]**j * binomial(n-k+j,n-k), n-k+j, n-k, k, n
# this records the action of the matrix [[1,t],[0,1]]
output += self.generic_evaluation(new_xlist, new_wt1, wt2, highest_wt) * self._polygens[i]**j * binomial(n-k+j,n-k)
else:
#if self._polygens[self._rank + i]**(pairing + j) * binomial(n-k+j,n-k) != 1:
# print self._RootSystem.weightify(wt1), self._polygens[self._rank + i]**(pairing + j) * binomial(n-k+j,n-k), n-k+j,n-k, k, n
# this records the action of the matrix [[u^{-1},0],[1,u]] = [[1,0],[u,1]]*[[u^{-1},0],[0,u]]
output += self.generic_evaluation(new_xlist, new_wt1, wt2, highest_wt) * self._polygens[self._rank + i]**(pairing + j) * binomial(n-k+j,n-k)
j += 1
new_wt1 += alpha
return output
def compare_constructions(self,glist):
"""
Input: A list of g-vectors
Output: A comparison of the cluster variables with these g-vectors (evaluated in the parameter ring) and the corresponding
sidest weight minors evaluated at a generic point of the reduced double Bruhat cell
"""
for gvect in glist:
self._cluster_algebra.find_cluster_variable(gvect)
cl_minor = self._cluster_algebra.cluster_variable(gvect).lift().subs(self._initial_cluster)
gen_minor = self.generic_evaluation(self._double_coxeter,self.g_to_weight(gvect))
if cl_minor == gen_minor:
print str(gvect)+": True"
else:
print str(gvect)+": False"
#print " Cluster minor=",cl_minor
#print " Generalized minor=",gen_minor
print " Diff=",expand(factor(cl_minor-gen_minor))